Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation

Nicholas Nethercote

National ICT Australia, Melbourne, Australia
njn@csse.unimelb.edu.au

Abstract

Dynamic binary instrumentation (DBI) frameworks make it easy
to build dynamic binary analysis (DBA) tools such as checkers
and profilers. Much of the focus on DBI frameworks has been on
performance; little attention has been paid to their capabilities. As a
result, we believe the potential of DBI has not been fully exploited.

In this paper we describe Valgrind, a DBI framework designed
for building heavyweight DBA tools. We focus on its unique sup-
port for shadow values—a powerful but previously little-studied
and difficult-to-implement DBA technique, which requires a tool
to shadow every register and memory value with another value that
describes it. This support accounts for several crucial design fea-
tures that distinguish Valgrind from other DBI frameworks. Be-
cause of these features, lightweight tools built with Valgrind run
comparatively slowly, but Valgrind can be used to build more in-
teresting, heavyweight tools that are difficult or impossible to build
with other DBI frameworks such as Pin and DynamoRIO.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—debugging aids, monitors; D.3.4
[Programming Languages]: Processors—incremental compilers

General Terms Design, Performance, Experimentation

Keywords Valgrind, Memcheck, dynamic binary instrumentation,
dynamic binary analysis, shadow values

1. Introduction

Valgrind is a dynamic binary instrumentation (DBI) framework
that occupies a unique part of the DBI framework design space.
This paper describes how it works, and how it differs from other
frameworks.

1.1 Dynamic Binary Analysis and Instrumentation

Many programmers use program analysis tools, such as error
checkers and profilers, to improve the quality of their software.
Dynamic binary analysis (DBA) tools are one such class of tools;
they analyse programs at run-time at the level of machine code.
DBA tools are often implemented using dynamic binary instru-
mentation (DBI), whereby the analysis code is added to the original
code of the client program at run-time. This is convenient for users,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’07 June 11-13, 2007, San Diego, California, USA.

Copyright © 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

Julian Seward

OpenWorks LLP, Cambridge, UK
julian@open-works.co.uk

as no preparation (such as recompiling or relinking) is needed.
Also, it gives 100% instrumentation coverage of user-mode code,
without requiring source code. Several generic DBI frameworks ex-
ist, such as Pin [11], DynamoRIO [3], and Valgrind [18, 15]. They
provide a base system that can instrument and run code, plus an
environment for writing tools that plug into the base system.

The performance of DBI frameworks has been studied closely [1,
2, 9]. Less attention has been paid to their instrumentation capabil-
ities, and the tools built with them. This is a shame, as it is the tools
that make DBI frameworks useful, and complex tools are more in-
teresting than simple tools. As a result, we believe the potential of
DBI has not been fully exploited.

1.2 Shadow Value Tools and Heavyweight DBA

One interesting group of DBA tools are those that use shadow
values. These tools shadow, purely in software, every register and
memory value with another value that says something about it. We
call these shadow value tools. Consider the following motivating
list of shadow value tools; the descriptions are brief but demonstrate
that shadow values (a) can be used in a wide variety of ways, and
(b) are powerful and interesting.

Memcheck [25] uses shadow values to track which bit values
are undefined (i.e. uninitialised, or derived from undefined values)
and can thus detect dangerous uses of undefined values. It is used
by thousands of C and C++ programmers, and is probably the most
widely-used DBA tool in existence.

TaintCheck [20] tracks which byte values are tainted (i.e. from
an untrusted source, or derived from tainted values) and can
thus detect dangerous uses of tainted values. TaintTrace [6] and
LIFT [23] are similar tools.

McCamant and Ernst’s secret-tracking tool [13] tracks which
bit values are secret (e.g. passwords), and determines how much
information about secret inputs is revealed by public outputs.

Hobbes [4] tracks each value’s type (determined from opera-
tions performed on the value) and can thus detect subsequent oper-
ations inappropriate for a value of that type.

DynCompB [7] similarly determines abstract types of byte val-
ues, for program comprehension and invariant detection purposes.

Annelid [16] tracks which word values are array pointers, and
from this can detect bounds errors.

Redux [17] creates a dynamic dataflow graph, a visualisation of
a program’s entire computation; from the graph one can see all the
prior operations that contributed to the each value’s creation.

In these tools each shadow value records a simple approxi-
mation of each value’s history—e.g. one shadow bit per bit, one

!'Purify [8] is a memory-checking tool similar to Memcheck. However,
Purify is not a shadow value tool as it does not does not track definedness
of values through registers. As a result, it detects undefined value errors less
accurately than Memcheck.

shadow byte per byte, or one shadow word per word—which the
tool uses in a useful way; in four of the above seven cases, the tool
detects operations on values that indicate a likely program defect.

Shadow value tools are a perfect example of what we call
“heavyweight” DBA tools. They involve large amounts of analysis
data that is accessed and updated in irregular patterns. They instru-
ment many operations (instructions and system calls) in a variety
of ways—for example, loads, adds, shifts, integer and FP opera-
tions, and allocations and deallocations are all handled differently.
For heavyweight tools, the structure and maintenance of the tool’s
analysis data is comparably complex to that of the client program’s
original data. In other words, a heavyweight tool’s execution is as
complex as the client program’s. In comparison, more lightweight
tools such as trace collectors and profilers add a lot of highly uni-
form analysis code that updates analysis data in much simpler ways
(e.g. appending events to a trace, or incrementing counters).

Shadow value tools are powerful, but difficult to implement.
Most existing ones have slow-down factors of 10x—100x or even
more, which is high but bearable if they are sufficiently useful.
Some are faster, but applicable in more limited circumstances, as
we will see.

1.3 Contributions

This paper makes the following contributions.

e Characterises shadow value tools. Tools using shadow values
are not new, but the similarities they share have received little
attention. This introduction has identified these similarities, and
Section 2 formalises them by specifying the requirements of
shadow value tools in detail.

Shows how to support shadow values in a DBI framework.
Section 3 describes how Valgrind works, emphasising its fea-
tures that support robust heavyweight tools, such as its code
representation, its first-class shadow registers, its events sys-
tem, and its handling of threaded programs. This section does
not delve deeply into well-studied topics, such as code cache
management and trace formation, that do not relate to shadow
values and instrumentation capabilities. Section 4 then shows
how Valgrind supports each of the shadow value requirements
from Section 2.2

Shows that DBI frameworks are not all alike. Section 5 eval-
uates Valgrind’s ease-of-tool-writing, robustness, instrumenta-
tion capabilities and performance. It involves some detailed
comparisons between Valgrind and Pin, and between Mem-
check and various other shadow value tools. Section 6 dis-
cusses additional related work. These two sections, along with
some details from earlier parts of the paper—especially Sec-
tion 3.5’s novel identification of two basic code represen-
tations (disassemble-and-resynthesise vs. copy-and-annotate)
for DBI—show that different DBI frameworks have different
strengths and weaknesses. In particular, lightweight tools built
with Valgrind run comparatively slowly, but Valgrind can be
used to build more interesting, robust, heavyweight tools that
are difficult or impossible to build with other DBI frameworks
such as Pin and DynamoRIO.

These contributions show that there is great potential for new DBA
tools that help programmers improve their programs, and that Val-

2Two prior publications [18, 15] described earlier versions of Valgrind.
However, they discussed shadow values in much less detail, and most of
Valgrind’s internals have changed since they were published: the old x86-
specific JIT compiler has been replaced, its basic structure and start-up
sequence has changed, its handling of threads, system calls, signals, and
self-modifying code has improved, and function wrapping has been added.

grind provides a good platform for building these tools. At the pa-
per’s end, Section 7 describes future work and concludes.

2. Shadow Value Requirements

This section describes what a tool must do to support shadow
values. We start here because (a) it shows that these requirements
are generic and not tied to Valgrind, and (b) knowledge of shadow
values is crucial to understanding how Valgrind differs from other
DBI frameworks. Not until Sections 3 and 4 will we describe
Valgrind and show how it supports these requirements. Then in
Sections 5 and 6 we will explain in detail how Valgrind’s support
for these requirements is unique among DBI frameworks.

There are three characteristics of program execution that are
relevant to shadow value tools: (a) programs maintain state, .S, a
finite set of locations that can hold values (e.g. registers and the
user-mode address space), (b) programs execute operations that
read and write S, and (c) programs execute operations (allocations
and deallocations) that make memory locations active or inactive.
We group the nine shadow value requirements accordingly.

Shadow State. A shadow value tool maintains a shadow state, S’,
which contains a shadow value for every value in S.

e RI: Provide shadow registers. A shadow value tool must ma-
nipulate shadow register values (integer, FP and SIMD) from
S’ just like normal register values, in which case it must mul-
tiplex two sets of register values—original and shadow—onto
the machine’s register file, without perturbing execution.

® R2: Provide shadow memory. S’ must hold shadow values for
all memory locations in S. To do this a shadow value tool
must partition the address space between the original memory
state and the shadow memory state. It also must access shadow
memory safely in the presence of multiple threads.

Read and write operations. A shadow value tool must instrument
some or all operations that read/write S with shadow operations
that read/write S’.

® R3: Instrument read/write instructions. Most instructions ac-
cess registers and many access memory. A shadow value tool
must instrument some or all of them appropriately, and so must
know which locations are accessed by every one of the many
(hundreds of) distinct instructions, preferably in a way that is
portable across different instruction sets.

® R4: Instrument read/write system calls. All system calls ac-
cess registers and/or memory: they read their arguments from
registers and/or the stack, and they write their return value to
a register or memory location. Many system calls also access
user-mode memory via pointer arguments. A shadow value tool
must instrument some or all of these accesses appropriately, and
so must know which locations are accessed by every one of the
many (hundreds of) different system calls.

Allocation and deallocation operations. A shadow value tool
may instrument some or all allocation and deallocation operations
with shadow operations that update S’ appropriately.

® R5: Instrument start-up allocations. At program start-up, all
the registers are “allocated”, as are statically allocated memory
locations. A shadow value tool must create suitable shadow
values for these locations. It must also create suitable shadow
values for memory locations not allocated at this time (in case
they are later accessed erroneously before being allocated).

® R6: Instrument system call (de)allocations. Some system calls
allocate memory (e.g. brk, mmap), and some deallocate memory

(e.g. munmap), and again some shadow value tools must instru-
ment these operations. Also, mremap can cause memory values
to be copied, in which case the corresponding shadow memory
values may have to be copied as well.

e R7: Instrument stack (de)allocations. Stack pointer updates
also allocate and deallocate memory, and some shadow value
tools must instrument these operations. This can be expen-
sive because stack pointer updates are so frequent. Also, some
programs switch between multiple stacks. Some shadow value
tools need to distinguish these from large stack allocations or
deallocations, which can be difficult at the binary level.

® RS8: Instrument heap (de)allocations. Most programs use a
heap allocator from a library that hands out heap blocks from
larger chunks allocated with a system call (brk and/or mmap).
Each heap block typically has book-keeping data attached
(e.g. the block size) which the client program should not ac-
cess (reading it may be safe, but overwriting it may crash the
allocator). Thus there is a notion of library-level addressability
which overlays the kernel-level addressability.

Therefore, a shadow value tool may need to also track heap
allocations and deallocations, and consider the book-keeping
data as not active. It should also treat the heap operations as
atomic, ignoring the underlying kernel-level allocations of large
chunks, instead waiting until the allocated bytes are handed to
the client by the allocator before considering them to be active.
Also, realloc needs to be handled the same way as mremap.

Transparent execution, but with extra output. We assume that
shadow value tools do not affect the client’s behaviour other than
producing auxiliary output. This leads to our final requirement.

® R9: Extra output. A shadow value tool must use a side-channel
for its output, such as a little-used file descriptor (e.g. stderr)
or a file. No other functional perturbation should occur.

Summary. These nine requirements are difficult to implement
correctly. Clearly, tools that do these tasks purely in software will
be slow if not implemented carefully.

One thing to note about these requirements: shadow value tools
are among the most heavyweight of DBA tools, and most DBA
tools involve a subset of these requirements (for example, almost
every DBA tool involves R9). Therefore, a DBI framework that
supports shadow values well will also support most conceivable
DBA tools.

Now that we know what shadow value tools do, we can describe
Valgrind, paying particular attention to its support for the nine
shadow value requirements. In Sections 5 and 6, we will see that
other DBI frameworks do not support shadow values as well as
Valgrind does.

3. How Valgrind Works

Valgrind is a DBI framework designed for building heavyweight
DBA tools. It was first released in 2002. The Valgrind distribution
[28] contains four tools, the most popular of which is Memcheck.
Valgrind has also been used to build several experimental tools. It is
available under the GNU General Public License (GPL), and runs
on x86/Linux, AMD64/Linux, and PPC{32,64}/{Linux,AIX}.

3.1 Basic Architecture

Valgrind tools are created as plug-ins, written in C, to Valgrind’s
core. The basic view is: Valgrind core + tool plug-in = Valgrind
tool. A tool plug-in’s main task is to instrument code fragments that
the core passes to it. Writing a new tool plug-in (and thus a new
Valgrind tool) is much easier than writing a new DBA tool from

scratch. Valgrind’s core does most of the work, and also provides
services to make common tool tasks such as recording errors easier.

3.2 Execution Overview

Valgrind uses dynamic binary re-compilation, similar to many other
DBI frameworks. A Valgrind tool is invoked by adding valgrind
--tool=<toolname> (plus any Valgrind or tool options) before a
command. The named tool starts up, loads the client program into
the same process, and then (re)compiles the client’s machine code,
one small code block at a time, in a just-in-time, execution-driven
fashion. The core disassembles the code block into an intermediate
representation (IR) which is instrumented with analysis code by
the tool plug-in, and then converted by the core back into machine
code. The resulting translation is stored in a code cache to be
rerun as necessary. Valgrind’s core spends most of its time making,
finding, and running translations. None of the client’s original code
is run.

Code handled correctly includes: normal executable code, dy-
namically linked libraries, shared libraries, and dynamically gener-
ated code. Only self-modifying code can cause problems (see Sec-
tion 3.16). The only code not under a tool’s control is that within
system calls, but system call side-effects can be indirectly observed,
as Section 3.12 will show.

Many complications arise from squeezing two programs—the
client and the tool—into a single process. They must share many
resources such as registers and memory. Also, Valgrind must be
careful not to relinquish its control over the client in the presence
of system calls, signals and threads, as we will see.

3.3 Starting Up

The goal of start-up is to load Valgrind’s core, the tool, and the
client into a single process, sharing the same address space.

Each tool is a statically-linked executable that contains the tool
code plus the core code. Having one copy of the core for every
tool wastes a little disk space (the core is about 2.5MB), but makes
things simple. The executable is linked to load at a non-standard
address that is usually free at program start-up (on x86/Linux
it is 0x38000000). If this address is not free—an exceptionally
rare case, in our experience—Valgrind can be recompiled to use
a different address.

The valgrind executable invoked by the user is a small wrap-
per program that scans its command-line for a -—tool option, and
then loads the selected tool’s static executable using execve.

Valgrind’s core first initialises some sub-systems, such as the
the address space manager and its own internal memory allocator.
It then loads the client executable (text and data), which can be an
ELF executable or a script (in which case the script interpreter is
loaded). It then sets up the client’s stack and data segment.

The core then tells the tool to initialise itself. The command-line
is parsed and core and tool options are dealt with. Finally, more
core sub-systems are initialised: the translation table, the signal-
handling machinery, the thread scheduler, and debug information
for the client is loaded. At this point, the Valgrind tool is in com-
plete control and everything is in place to begin translating and ex-
ecuting the client from its first instruction.

This is the third structure and start-up approach that has been
used for Valgrind, and is by far the most reliable. The first one [18]
used the dynamic linker’s LD_PRELOAD mechanism to inject Val-
grind’s core and the tool (both built as shared objects) into the
client. This did not work with statically compiled executables, al-
lowed some client code to run natively before Valgrind gained con-
trol, and was not widely portable. The second one [15] was sim-
ilar to the current approach, but required the use of large empty
memory mappings to force components into the right place, which
turned out to be somewhat unreliable.

Most DBI frameworks use injection-style methods rather than
having their own program loader. As well as avoiding the problems
encountered by the prior two approaches, our third approach has
two other advantages. First, it gives Valgrind great control over
memory layout. Second, it it avoids dependencies on other tools
such as the dynamic linker, which we have found to be an excellent
strategy for improving robustness.’

3.4 Guest and Host Registers

Valgrind itself runs on the machine’s real or host CPU, and (con-
ceptually) runs the client program on a simulated or guest CPU.
We refer to registers in the host CPU as host registers and those of
the simulated CPU as guest registers. Due to the dynamic binary
recompilation process, a guest register’s value may reside in one of
the host’s registers, or it may be spilled to memory for a variety of
reasons. Shadow registers are shadows of guest registers.

Valgrind provides a block of memory per client thread called
the ThreadState. Each one contains space for all the thread’s guest
and shadow registers and is used to hold them at various times,
in particular between each code block. Storing guest registers in
memory between code blocks sounds like a bad idea at first, be-
cause it means that they must be moved between memory and the
host registers frequently, but it is reasonable for heavyweight tools
with high host register pressure for which the benefits of a more
optimistic strategy are greatly diminished.

3.5 Representation of code: D&R vs. C&A

There are two fundamental ways for a DBI framework to represent
code and allow instrumentation.

Valgrind uses disassemble-and-resynthesise (D&R): machine
code is converted to an IR in which each instruction becomes
one or more IR operations. This IR is instrumented (by adding
more IR) and then converted back to machine code. All of the
original code’s effects on guest state (e.g. condition code setting)
must be explicitly represented in the IR because the original client
instructions are discarded and the final code is generated purely
from the IR. Valgrind’s use of D&R is the single feature that most
distinguishes it from other DBI frameworks.

Other DBI frameworks use copy-and-annotate (C&A): incom-
ing instructions are copied through verbatim except for necessary
control flow changes. Each instruction is annotated with a descrip-
tion of its effects, via data structures (e.g. DynamoRIO) or an
instruction-querying API (e.g. Pin). Tools use the annotations to
guide their instrumentation. The added analysis code must must be
interleaved with the original code without perturbing its effects.

Hybrid approaches are possible. For example, earlier versions
of Valgrind used D&R for integer instructions and C&A for FP and
SIMD instructions (this was more by accident than design). Vari-
ations are also possible; for example, DynamoRIO allows instruc-
tion bytes to be modified in-place before being copied through.

Each approach has its pros and cons, depending on the instru-
mentation requirements. D&R may require more up-front design
and implementation effort, because a D&R representation is ar-
guably more complex. Also, generating good code at the end re-
quires more development effort—Valgrind’s JIT uses a lot of con-
ventional compiler technology. In contrast, for C&A, good client
code stays good with less effort. A D&R JIT compiler will proba-
bly also translate code more slowly.

D&R may not suitable for some tools that require low-level in-
formation. For example, the exact opcode used by each instruc-

3 For example, Valgrind no longer uses the standard C library, but has a
small version of its own. This has avoided any potential complications
caused by having two copies of the C library in the address space—one
for the client, and and for Valgrind and the tool. It also made the AIX port
much easier, because AIX’s C library is substantially different to Linux’s.

tion may be lost. IR annotations can help, however—for example,
Valgrind has “marker” statements that indicate the boundaries, ad-
dresses and lengths of original instructions. C&A can suffer the
same problem if the annotations are not comprehensive.

D&R'’s strengths emerge when complex analysis code must be
added. First, D&R’s use of the same IR for both client and analysis
code guarantees that analysis code is as expressive and powerful
as client code. Making all side-effects explicit (e.g. condition code
computations) can make instrumentation easier.

The performance dynamics also change. The JIT compiler can
optimise analysis code and client code equally well, and naturally
tightly interleaves the two. In contrast, C&A must provide a sep-
arate way to describe analysis code (so C&A requires some kind
of IR after all). This code must then be fitted around the original
instructions, which requires effort (either by the framework or the
tool-writer) to do safely and with good performance. For example,
Pin analysis code is written as C functions (i.e. the analysis code
IR is C), which are compiled with an external C compiler, and Pin
then inlines them if possible, or inserts calls to them.

Finally, D&R is more verifiable—any error converting machine
code to IR is likely to cause visibly wrong behaviour, whereas a
C&A annotation error will result in incorrect analysis of a correctly
behaving client.* D&R also permits binary translation from one
platform to another (although Valgrind does not do this). D&R also
allows the original code’s behaviour to be arbitrarily changed.

In summary, D&R requires more effort up-front and is overkill
for lightweight instrumentation. However, it naturally supports
heavyweight instrumentation such as that required by shadow value
tools, and so is a natural fit for Valgrind.

3.6 Valgrind’s IR

Prior to version 3.0.0 (August 2005), Valgrind had an x86-specific,
part D&R, part C&A, assembly-code-like IR in which the units
of translation were basic blocks. Since then Valgrind has had an
architecture-neutral, D&R, single-static-assignment (SSA) IR that
is more similar to what might be used in a compiler. IR blocks are
superblocks: single-entry, multiple-exit stretches of code.

Each IR block contains a list of statements, which are opera-
tions with side-effects, such as register writes, memory stores, and
assignments to temporaries. Statements contain expressions, which
represent pure (no side effects) values such as constants, register
reads, memory loads, and arithmetic operations. For example, a
store statement contains one expression for the store address and
another for the store value. Expressions can be arbitrarily compli-
cated trees (tree IR), but they can also be flattened by introducing
statements that write intermediate values to temporaries (flat IR).

The IR has some RISC-like features: it is load/store, each primi-
tive operation only does one thing (many CISC instructions are bro-
ken up into multiple operations), and when flattened, all operations
operate only on temporaries and literals. Nonetheless, supporting
all the standard integer, FP and SIMD operations of different sizes
requires more than 200 primitive arithmetic/logical operations.

The IR is architecture-independent. Valgrind handles unusual
architecture-specific instructions, such as cpuid on x86, with a
call to a C function that emulates the instruction. These calls have
annotations that say which guest registers and memory locations
they access, so that a tool can see some of their effects while
avoiding the need for Valgrind to represent the instruction explicitly
in the IR. This is another case (like the “marker” statements) where
Valgrind uses IR annotations to facilitate instrumentation (but it is
not C&A, because the instruction is emulated, not copied through).

4This is not just a theoretical concern. Valgrind’s old IR used C&A for
SIMD instructions; some SIMD loads were mis-annotated as stores, and
some SIMD stores as loads, for more than a year before being noticed.

0x24F275: movl -16180(%ebx,%heax,4) ,%eax
1: —————- IMark (0x24F275, 7) --—-—---
2: t0 = Add32(Add32(GET:I32(12),# get %ebx and

Sh132(GET:132(0),0x2:18)), # ’eax, and
O0xFFFFCOCC:132) # compute addr
3: PUT(0) = LDle:I32(t0) # put jeax
0x24F27C: addl %ebx,%eax
4: —————- IMark (0x24F27C, 2) ------
5: PUT(60) = 0x24F27C:I32 # put Jeip
6: t3 = GET:I32(0) # get Jeax
7: t2 = GET:I32(12) # get Jebx
8: tl1 = Add32(t3,t2) # addl
9: PUT(32) = 0x3:I32 # put eflags vall
10: PUT(36) = t3 # put eflags val2
11: PUT(40) = t2 # put eflags val3
12: PUT(44) = 0x0:I32 # put eflags vald
13: PUT(0) = t1 # put Jeax
0x24F27E: jmp*l %eax
14: —-————- IMark (0x24F27E, 2) ------
15: PUT(60) = 0x24F27E:I32 # put Yeip
16: t4 = GET:I32(0) # get Jeax

17: goto {Boring} t4

Figure 1. Disassembly: machine code — tree IR

3.7 Translating a Single Code Block

Valgrind translates code blocks on demand. To create a translation
of a code block, Valgrind follows instructions until one of the
following conditions is met: (a) an instruction limit is reached
(about 50, depending on the architecture), (b) a conditional branch
is hit, (c) a branch to an unknown target is hit, or (d) more than three
unconditional branches to known targets have been hit. This policy
is less sophisticated than those used by frameworks like Pin and
DynamoRIO; in particular, Valgrind does not recompile hot code.

There are eight translation phases. This high number is a con-
sequence of Valgrind using D&R. They are described by the fol-
lowing paragraphs. All phases are performed by the core, except
instrumentation, which is performed by the tool. Phases marked
with a “*’ are architecture-specific.

Phase 1. Disassembly*: machine code — tree IR. The disas-
sembler converts machine code into (unoptimised) tree IR. Each
instruction is disassembled independently into one or more state-
ments. These statements fully update the affected guest registers in
memory: guest registers are pulled from the ThreadState into tem-
poraries, operated on, and then written back.

Figure 1 gives an example for x86 machine code. Three x86
instructions are disassembled into 17 tree IR statements.

e Statements 1, 4 and 14 are IMarks: no-ops that indicate where
an instruction started, its address and length in bytes. These are
used by profiling tools that need to see instruction boundaries.

Statement 2 assigns an expression tree to a temporary tO; it
shows how a CISC instruction can become multiple operations
in the IR. GET: I32 fetches a 32-bit integer guest register from
the ThreadState; the offsets 12 and 0 are for guest registers %ebx
and %eax. Add32 is a 32-bit add, Sh132 is a 32-bit left-shift.
Statement 16 is a simpler assignment.

Statement 3 writes a guest register (%eax) value back to its
slot in the ThreadState (the LD1e is a little-endian load). State-
ments 5 and 15 update the guest program counter (%eip) in the
ThreadState.

e Statements 9-12 write four values to the ThreadState. Many
x86 instructions affect the condition codes (%eflags), and Val-
grind computes them from these four values when they are
used. Often %eflags is clobbered without being used, so most
of these PUTs can be optimised away later. DBI frameworks
that use C&A do not synthesise the condition codes like this,
but instead obtain them “for free” as a side-effect of running
the code. But when heavyweight analysis code is added they
must be saved and restored frequently, which involves expen-
sive instructions on x86. In contrast, Valgrind’s approach is
more costly to begin with, but does not degrade badly in such
cases. Also, knowing precisely the operation and operands most
recently used to set the condition codes is helpful for some
tools. For example, Memcheck’s definedness tracking of condi-
tion codes was less accurate with with Valgrind’s old IR, which
used C&A for jeflags.

e Statement 17 is an unconditional jump to the address in t4.

Phase 2. Optimisation 1: tree IR — flat IR. The first optimisa-
tion phase flattens the IR and does several optimisations: redundant
get and put elimination (to remove unnecessary copying of guest
registers to/from the ThreadState), copy and constant propagation,
constant folding, dead code removal, common sub-expression elim-
ination, and even simple loop unrolling for intra-block loops. It is
also possible to pass in callback functions that can partially eval-
uate certain platform-specific C helper calls. On x86 and AMD64
this is used to optimise the %eflags handling.
This phase updates the IR shown in Figure 1 in several ways.

e The complex expression tree in statement 2 is flattened into five
assignments to temporaries: two using GET, two using Add32,
one using Sh132.

e Statement 3 is changed from a PUT to an assignment to a
temporary; this is possible because the PUT is made redundant
by the PUT in statement 13.

e Statement 5 is removed. This is possible because statement
15 writes a new value for %eip and there are no intervening
statements that could cause a memory exception (if there were,
it could not be removed because a guest signal handler that
inspects the %eip value in the ThreadState could be invoked).

Statements 6, 7 and 16 are removed, because they are made
redundant by the GET statements introduced by the flattening of
statement 2.

Phase 3. Instrumentation: flat IR — flat IR. The code block is
then passed to the tool, which can transform it arbitrarily. It is im-
portant that the IR is flattened at this point as it makes instrumen-
tation easier, particularly for shadow value tools.

Figure 2 shows IR for the movl instruction from Figure 1 af-
ter it has been instrumented by Memcheck. Memcheck’s shadow
values track the definedness of values; its instrumentation has been
described previously [25] and the details are beyond the scope of
this paper. However, we make the following observations.

e Of the 18 statements, 11 were added by Memcheck—the added
analysis code is larger and more complex than the original code.

e Shadow registers are stored in the ThreadState just like guest
registers. For example, guest register %eax is stored at offset 0
in the ThreadState, and its shadow is stored at offset 320.

e Every operation involving guest values is preceded by a corre-
sponding operation on shadow values.

e In some cases the shadow operation is a single statement,
e.g. statements 2, 4 and 6. Even without understanding how
Memcheck works it is easy to see what they are doing. For ex-

* 1 —————- IMark (0x24F275, 7) —------
2: tl1 = GET:I32(320) # get sh(Y%eax)
* 3: t8 = GET:I32(0) # *get Jeax
4: t14 = Sh132(t11,0x2:18) # shadow shll
* 5: t7 = Sh132(t8,0x2:I8) # *shll
6: t18 = GET:I32(332) # get sh(%ebx)
* 7: t9 = GET:I32(12) # *get Jebx
8: t19 = 0r32(t18,t14) # shadow addl 1/3
9: t20 = Neg32(t19) # shadow addl 2/3
10: t21 = 0r32(t19,t20) # shadow addl 3/3
x11: t6 = Add32(t9,t7) # *xaddl
12: t24 = Neg32(t21) # shadow addl 1/2

13: t25 = 0r32(t21,t24) # shadow addl 2/2
x14: t5 = Add32(t6,0xFFFFCOCC:I32) # *addl
15: t27 = CmpNEZ32(t25) # shadow loadl 1/3

16: DIRTY t27 RdFX-gst(16,4) RAFX-gst(60,4)
::: helperc_value_check4_fail{0x380035f4%}()
shadow loadl 2/3
17: t29 = DIRTY 1:11 RdFX—gst(16,4) RdFX—gst(60,4)
::: helperc_LOADV321e{0x38006504} (t5)
shadow loadl 3/3

*x18: t10 = LDle:I32(th) # *xloadl

Figure 2. Instrumented flat IR. The statements that were present
before instrumentation took place are prefixed with a “*’.

ample, when the original code GETs %eax from the ThreadState
into a temporary, the analysis code GETs the shadow of %eax
from the ThreadState into another temporary.

e In some cases the shadow operation is larger than the original
operation, as seen in statements 8—10 and 12—-13. The shadow
load operation in statements 15-17 is larger still. Statement
15 tests the definedness of the pointer value by comparing its
shadow value to zero, and statement 16 is a conditional call
(conditional on the value in t27) to an error-reporting function
that is only called if the test fails, i.e. if the load uses an
address value that is not fully defined. (The DIRTY and RAFX
annotations indicate that some guest registers are read from
the ThreadState by the function, and so these values must be
up-to-date. 0x380035£4 is the address of the called function.)
Statement 17 calls another C function, helperc_L0OADV321le,
which does a shadow load to complement the original load
in statement 18. The shadow load is implemented using a C
function because it is too complex to be written inline [19].

Phase 4. Optimisation 2: flat IR — flat IR. A second, simpler op-
timisation pass performs constant folding and dead code removal.
Figure 2 is a case in point—it actually shows the instrumented code
after this second optimisation phase is run (which reduced it from
48 statements to 18). This optimisation makes life easier for tools
by allowing them to be somewhat simple-minded, knowing that the
code will be subsequently improved.

Phase 5. Tree building: flat IR — tree IR. The tree builder con-
verts flat IR back to tree IR in preparation for instruction selection.
Expressions assigned to temporaries which are used only once are
usually substituted into the temporary’s use point, and the assign-
ment is deleted. The resulting code may perform loads in a different
order to the original code, but loads are never moved past stores.

Phase 6. Instruction selection®: tree IR — instruction list. The
instruction selector converts the tree IR into a list of instructions
which use virtual registers (except for those instructions that are
hard-wired to use particular registers; these are common on x86
and AMDG64). The instruction selector uses a simple, greedy, top-
down tree-matching algorithm.

-- t21 = 0r32(t19,Neg32(t19))

movl %Avri9,%hvrdl movl %edx,%edi
negl %%vrdl negl Jedi
movl %Avri9,%%hvrd0
orl %%vrdl,%lvrd0
movl %%Avr40,%shvr2l

orl %edi,%edx

Figure 3. Register allocation, before and after. Virtual registers are
named %%vrNN.

Phase 7. Register allocation: instruction list — instruction list.
The linear-scan register allocator [26] replaces virtual registers with
host registers, inserting spills as necessary. One general-purpose
host register is always reserved to point to the ThreadState.

Although the instructions are platform-specific, the register al-
locator is platform-independent; it uses some callback functions to
find out which registers are read and written by each instruction.

Figure 3 shows an example of register allocation. The statement
at the top is created by the tree builder from statements 9 and 10
in Figure 2. The figure shows that the register allocator can remove
many register-to-register moves, which makes life easier for the
instruction selector.

Phase 8. Assembly*: instruction list — machine code. The final
assembly phase simply encodes the selected instructions appropri-
ately and writes them to a block of memory.

3.8 Storing Translations

Valgrind’s code storage system is simple and warrants only a brief
description. Translations are stored in the translation table, a fixed-
size, linear-probe hash table. The translation table is large (about
400,000 entries) so it rarely gets full. If the table gets more than
80% full, translations are evicted in chunks, 1/8th of the table at
a time, using a FIFO (first-in, first-out) policy—this was chosen
over the more obvious LRU (least recently used) policy because it
is simpler and it still does a fairly good job. Translations are also
evicted when code in shared objects is unloaded (by munmap), or
made obsolete by self-modifying code (see Section 3.16).

3.9 Executing Translations

Once a translation is made it can be executed. What happens be-
tween code blocks? Control flows from one translation to the next
via one of two routes: the dispatcher (fast), or the scheduler (slow).

At a translation’s end, control falls back to the dispatcher, a
hand-crafted assembly code loop. At this point all guest registers
are in the ThreadState. Only two host registers are live: one holds
the guest program counter, and the other holds a value that is only
used for unusual events, explained shortly, when control must fall
back into the scheduler. The dispatcher looks for the appropriate
translation in a small direct-mapped cache which holds addresses
of recently-used translations. If that look-up succeeds (the hit-rate
is around 98%), the translation is executed immediately. This fast
case takes only fourteen instructions on x86.

When the fast look-up fails, control falls back to the scheduler,
which is written in C. It searches the full translation table. If a
translation is not found, a new translation is made. In either case,
the direct-mapped cache is updated to store the translation address
for the code block. The dispatcher is re-entered, and the fast direct-
mapped look-up will this time definitely succeed.

There are certain unusual events upon which control falls back
to the scheduler. For example, the core periodically checks whether
a thread switch is due (see Section 3.14) or whether there are any
outstanding signals to be handled (see Section 3.15). To support
this, the dispatcher causes control to fall out to the scheduler every
few thousand translation executions. Control is similarly returned

to the scheduler when system calls (see Section 3.10) and client
requests (see Section 3.11) occur.

Valgrind does not perform chaining (also known as linking)—a
technique that patches branch instructions in order to link trans-
lations directly, which avoids many visits to the dispatcher. Ear-
lier versions did, but it has not yet been implemented in the new
JIT compiler. The lack of chaining hurts Valgrind’s speed less than
for other DBI frameworks; we believe this is because Valgrind’s
dispatcher is fast,” and Valgrind chases across many unconditional
branches.

3.10 System Calls

Valgrind cannot trace into the kernel. When a system call happens,
control falls back into the scheduler, which: (a) saves the tool’s
stack pointer; (b) copies the guest registers into the host registers,
except the program counter; (c) calls the system call; (d) copies the
guest registers back out to memory, except the program counter; (e)
restores the tool’s stack pointer. Note that the system call is run on
the client’s stack, as it should be (the host stack pointer normally
points to the tool’s stack).

System calls involving partitioned resources such as memory
(e.g. mmap) and file descriptors (e.g. open) are pre-checked to
ensure they do not cause conflicts with the tool. For example, if the
client tries to mmap memory currently used by the tool, Valgrind
will make it fail without even consulting the kernel.

3.11 Client Requests

Valgrind’s core has a simple trap-door mechanism that allows a
client program to pass messages and queries, called client requests,
to the core or a tool plug-in. Client requests are embedded in client
programs using pre-defined macros from a header file provided
by Valgrind. The mechanism is described in previous publications
about Valgrind [18, 15] and so we omit the details here. We will see
in Sections 3.12 and 3.16 examples of the use of client requests.

3.12 The Events System

Valgrind’s IR is expressive, but fails to describe to tools certain
changes to guest register and memory state done by clients. It also
does not convey any details of memory allocations and dealloca-
tions. Valgrind provides an events system to describe such changes.

Let us first consider the accesses done by system calls. All sys-
tem calls access registers: they read their arguments from registers
and/or memory, and they write their return value to a register. Many
system calls also access user-mode memory via pointer arguments,
e.g. settimeofday is passed pointers to two structs which it reads
from, and gettimeofday fills in two structs with data. Knowing
which registers and memory locations are accessed by every sys-
tem call is difficult because there are many system calls (around 300
for Linux), some of which have tens or hundreds of sub-cases, and
there are many differences across platforms. Several things must
be known for each system call: how many arguments it takes, each
argument’s size, which ones are pointers (and which of those can
be NULL), which ones indicate buffer lengths, which ones are null-
terminated strings, which ones are not read in certain cases (e.g. the
third argument of open is only read if the second argument has cer-
tain values), and the sizes of various types (e.g. struct timeval
used by gettimeofday and settimeofday).

Valgrind does not encode this information about system calls
in its IR, because there are too many system calls and too much
variation across platforms to do so cleanly. Instead it provides the
events system to inform tools about register and memory accesses

3 In comparison, chaining improved Strata’s basic slow-down factor from
22.1x to 4.1x, because dispatching takes about 250 cycles [24]. Valgrind’s
slow-down even without chaining is 4.3x.

that are not directly visible from the IR. For each event, a tool
can register a callback function to be called each time the event
occurs. The events list is given in Table 1. A tool can use the
pre_* events to know when system calls are about to read registers
and memory locations, and the post_x* events to know when to
update the shadow state after system calls have written new values.
The register events pass to their callbacks the size of the accessed
register and its offset in the ThreadState; the memory events pass
in the address and size of the accessed memory region.

How are these six events triggered? Valgrind provides a wrapper
for every system call, which invokes these callbacks as needed.
Every system call has different arguments and thus a different
wrapper. Because there are so many cases, Valgrind’s wrappers are
almost 15,000 lines of tedious C code (in Valgrind 3.2.1), partly
generic, partly platform-specific, aggregated over several years of
development. In comparison, Memcheck is 10,509 lines of code.
The wrappers save a great deal of work for tools that need to know
about system call accesses, and also make the system call handling
platform-independent for tools. No other DBI framework has such
system call wrappers.

This mechanism is crucial for many shadow value tools. For ex-
ample, Memcheck critically relies on it for its bit-precise defined-
ness tracking. Indeed, several bugs in Valgrind’s wrappers were
found because they caused Memcheck to give false positives or
false negatives.

A similar case involves stack allocations and deallocations. A
tool could detect them just by detecting changes to the stack pointer
from the IR. However, because it is a common requirement, Val-
grind provides events (new_mem_stack and die_mem_stack) for
these cases. The core instruments the code with calls to the event
callbacks on the tool’s behalf. This makes things easier for tools. It
also provides a canned solution to a tricky part of the problem—
as Section 2 noted, it is hard to distinguish large stack alloca-
tions and deallocations from stack-switches, but doing so is vital
for some shadow value tools. Valgrind (and hence tools using the
stack events) uses a heuristic: if the stack pointer changes by more
than 2MB, a stack switch has occurred. The 2MB value is change-
able with a command line option. Sometimes this heuristic is too
crude, so Valgrind also provides three client requests which let the
client register, de-register and resize stacks with Valgrind. So even
in tricky cases, with a small amount of help from the programmer
all stack switches can be detected.

The remaining events in Table 1 inform tools about allocations
done at program start-up and via system calls.

3.13 Function Replacement and Function Wrapping

Valgrind supports function replacement, i.e. it allows a tool to
replace any function in a program with an alternative function.
A replacement function can also call the function it has replaced.
This allows function wrapping, which is particularly useful for
inspecting the arguments and return value of a function.

3.14 Threads

Threads pose a particular challenge for shadow value tools. The
reason is that loads and stores become non-atomic: each load/store
translates into the original load/store plus a shadow load/store. On a
uni-processor machine, a thread switch might occur between these
two operations. On a multi-processor machine, concurrent memory
accesses to the same memory location may complete in a different
order to their corresponding shadow memory accesses. It is unclear
how to best deal with this, as a fine-grained locking approach would
likely be slow.

To sidestep this problem, Valgrind serialises thread execution
with a thread locking mechanism. Only the thread holding the lock
can run, and threads drop the lock before they call a blocking

[Req. Valgrind events Called from

Memcheck callbacks

R4 pre_reg_read, post_reg_write
pre_mem_read{,_asciiz}
pre_mem_write, post_mem_write

Every system call wrapper
Many system call wrappers
Many system call wrappers

check_reg_is_defined, make_reg_defined
check_mem_is_defined{, _asciiz}
check_mem_is_addressable, make_mem_defined

RS new_mem_startup

Valgrind’s code loader

make_mem_defined

R6 new_mem_mmap, die_mem_munmap
new_mem_brk, die_mem_brk
copy_mem_mremap

brk wrapper
mremap wrapper

mmap wrapper, munmap wrapper

make_mem_defined, make_mem_noaccess
make_mem_undefined, make_mem_noaccess
copy_range

R7 new_mem_stack, die_mem_stack

Instrumentation of SP changes

make_mem_undefined, make_mem_noaccess

Table 1. Valgrind events, their trigger locations, and Memcheck’s callbacks for handling them.

system call,’ or after they have been running for a while (100,000
code blocks). The lock is implemented using a pipe which holds a
single character; each thread tries to read the pipe, only one thread
will be successful, and the others will block until the running thread
relinquishes the lock by putting a character back in the pipe. Thus
the kernel still chooses which thread is to run next, but Valgrind
dictates when thread-switches occur and prevents more than one
thread from running at a time.

This is the third thread serialisation mechanism that has been
used in Valgrind, and is by far the most robust. The first one [18, 15]
involved Valgrind providing a serialised version of the 1ibpthread
library. This only worked with programs using pthreads. It also
caused many problems because on Linux systems, glibc and the
pthreads library are tightly bound and interact in various ways “un-
der the covers” that are difficult to replicate.” The second one was
more like the current one, but was more complex, requiring extra
kernel threads to cope with blocking I/O.

This serialisation is a unique Valgrind feature not shared by
other DBI frameworks. It has both pros and cons: it means that Val-
grind tools using shadow memory can ignore the atomicity issue.
However, as multi-processor machines become more popular, the
resulting performance shortcomings for multi-threaded programs
will worsen. How to best overcome this problem remains an open
research question.

3.15 Signals

Unix signal handling presents a problem for all DBI frameworks—
when an application sets a signal handler, it is giving the kernel
a callback (code) address in the application’s space which will be
used to deliver the signal. This would allow the client’s original
handler code to be executed natively. Even worse, if the handler did
not return but instead did a longjmp, the tool would permanently
lose control. Therefore, Valgrind intercepts all system calls that
register signal handlers. It also catches all signals and delivers them
appropriately to the client. This standard technique is tedious but
unavoidable. Also, Valgrind takes advantage of it to ensure that
asynchronous signals are delivered only between code blocks, and
can thus never separate loads/stores from shadow loads/stores.

3.16 Self-modifying Code

Self-modifying code is always a challenge for DBI frameworks.
On architectures such as PowerPC it is easy to detect because an
explicit “flush” instruction must be used when code is modified,
but the x86 and AMDG64 architectures do not have this feature.
Therefore, Valgrind has a mechanism to handle self-modifying
code. A code block using this mechanism records a hash of the
original code it was derived from. Each time the block executes,

6 Thus kernel code can run in parallel with user code. This is allowable
because the kernel code does not affect shadow memory.

7 This is another example where avoiding dependencies on other software
improved robustness.

the hash is recomputed and checked, and if it does not match, the
block is discarded and the code retranslated.

This has a high run-time cost. Therefore, by default Valgrind
only uses this mechanism for code that is on the stack. This is
enough to handle the trampolines that some compilers (e.g. GCC)
put on the stack when running nested functions, which we have
found to be the main cause of self-modifying code.® This minimises
the cost, as only code on the stack is slowed down. The mechanism
can also be turned off altogether or turned on for every block.

Valgrind also provides another mechanism for handling self-
modifying code—a client request which tells it to discard any
translations of instructions in a certain address range. It is most
useful for dynamic code generators such as JIT compilers.

4. Valgrind’s Shadow Value Support

This section describes how the features described in the previous
section support all nine shadow value requirements. Because these
requirements are a superset of most DBA tools’ requirements,
Valgrind supports most conceivable DBA tools.

R1: Provide shadow registers. Valgrind has three noteworthy
features that make shadow registers easy to use. First, shadow
registers are first-class entities: (a) space is provided for them in
the ThreadState, (b) they can be accessed just as easily as guest
registers, (c) they can be manipulated and operated on in the same
ways. This makes complex shadow operations code natural and
easy to write, even those involving FP and SIMD registers.

Second, the IR provides an unlimited supply of temporaries in
which guest registers, shadow registers, and intermediate values
can be manipulated. This is invaluable for ease-of-use because
shadow operations can introduce many extra intermediate values.

Third, the IR’s RISC-ness exposes all implicit intermediate
values, such as those computed by complex addressing modes,
which can make instrumentation easier, particularly on a CISC
architecture like x86.

Fourth, all code is treated equally. Shadow operations bene-
fit fully from Valgrind’s post-instrumentation IR optimiser and in-
struction selector. This makes them easy to write, because one can
rely on obvious redundancies being optimised away. This is a con-
sequence of using D&R.

This third feature is also crucial for performance, because it
means that client code and analysis code can be interleaved arbi-
trarily by the back-end. For example, Valgrind’s register allocator
works with guest and shadow registers equally to minimise spilling.
Also, no special tricks are required to prevent analysis code from
perturbing condition codes, because they are already computed ex-
plicitly rather than as a side-effect of client code.

R2: Provide shadow memory. Valgrind provides no overt sup-
port for shadow memory, such as built-in data structures, because

8 Ada programs use them particularly often, and Valgrind was more or less
unusable with Ada programs until this was implemented.

shadow memory varies enough from tool to tool [19] that it is dif-
ficult to factor out any common supporting operations. However,
Valgrind does provide two crucial features to avoid problems with
the non-atomicity of loads/stores and shadow loads/stores: its seri-
alisation of threads, and its guaranteed delivery of asynchronous
signals only between code blocks. Together they allow shadow
value tools to run any multi-threaded program correctly and effi-
ciently on uni-processors, and correctly on multi-processors, with-
out any need for shadow memory locking.

R3: Instrument read/write instructions. Valgrind supports this
requirement—all reads and writes of registers and memory are vis-
ible in the IR and instrumentable. The IR’s load/store nature makes
instrumentation of memory accesses particularly easy. Also, the
splitting of complex CISC instructions into multiple distinct opera-
tions helps some tools, e.g. by exposing intermediate values such as
addresses computed with complex addressing modes, and making
condition code computations explicit. Again, this is a consequence
of using D&R.

As for the added analysis code: the ability to write it as inline IR
helps with efficiency and ensures that analysis code is as expressive
(e.g. can use FP and SIMD operations) as client code; the ability to
write it in separate C functions also allows more complex analysis
code to be written easily.

R4-R7. These requirements (instrument read/write system calls,

instrument start-up allocations, instrument system call (de)allocations,

and instrument stack (de)allocations) are all supported by Val-
grind’s events system. The left-most column of Table 1 shows
which events are used for each requirement.

R8: Instrument heap (de)allocations. Valgrind does not track
heap allocations and deallocations with its events system. (It could,
this is due to historical reasons.) Instead, tools that need to track
these events can use function wrappers or function replacements
for the relevant functions (e.g. malloc, free).

RY9: Extra Output. Valgrind allows a shadow value tool to print
error messages during execution and at termination using its I/0
routines, which send output to a file descriptor (stderr by default),
file, or socket, as specified by a command line option. Tools can
also write additional data to files. Valgrind provides other useful
output-related services: error recording, the ability to suppress (ig-
nore) uninteresting/unfixable errors via suppressions listed in files,
stack tracing, and debug information reading.

5. Evaluation

‘We now quantify how easy it is to write Valgrind tools, discuss their
robustness and capabilities, and measure their performance.

5.1 Tool-writing Ease

We can use code sizes to roughly measure the amount of effort that
went into Valgrind’s core and various tools. In Valgrind 3.2.1, the
core contains 170,280 lines of C and 3,207 lines of assembly code
(including comments and blank lines). In comparison, Memcheck
contains 10,509 lines of C, Cachegrind (a cache profiler) is 2,431
lines of C, Massif (a heap profiler) is 1,764, and Nulgrind (the
“null” tool that adds no analysis code) is 39. Even though lines of
code is not a good measure of coding effort, the benefit of using
Valgrind is clear, compared to writing a new tool from scratch.
Having said that, heavyweight tools like Memcheck are still not
trivial to write, and require a reasonable amount of code.
Valgrind’s use of D&R can make simple tools more difficult
to write than in C&A frameworks. For example, a tool that traces
memory accesses would be about 30 lines of code in Pin, and about

100 in Valgrind. However, in our experience, for the most interest-
ing tools most of the development effort goes not into extracting ba-
sic data (such as run-time addresses and values), but into analysing
and presenting that data in useful ways to the user—it makes lit-
tle difference whether it takes 30 lines or 100 lines of code to ex-
tract a memory access trace if a tool contains 2,000 lines devoted
to analysing it.

In contrast, for heavyweight tools D&R makes instrumentation
easier for tools like Memcheck because of the reasons explained in
Sections 3.5 and 4.

5.2 Tool Robustness

By “robustness”, we mean how many different programs a tool can
correctly run. For tools built with DBI frameworks, this covers both
the framework and the tool—it is possible to build a non-robust tool
on top of a robust framework.

Robustness is not easy to quantify. We provide anecdotal ev-
idence for the robustness of Valgrind and Memcheck: their large
number of users; and the range of programs with which they have
been successfully used; the range of platforms they support; and
some design decisions we have made to improve robustness.

Valgrind has become a standard C and C++ development tool
on Linux. Memcheck is the most popular Valgrind tool, accounting
for about 80% of all Valgrind tool use [27]. The Valgrind website
[28] averages more than 1,000 unique visitors per day. Valgrind
tools are used by the developers of many large projects, such as
Firefox, OpenOffice, KDE, GNOME, Qt, libstdc++, MySQL, Perl,
Python, PHP, Samba, RenderMan, and Unreal Tournament.’ They
have successfully been used on a wide range of different software
types, implemented using many different languages and compilers,
on programs containing up to 25 million lines of code. They also
successfully handle multi-threaded programs.

Valgrind and Memcheck run on multiple platforms, 32-bit and
64-bit: x86/Linux, AMD64/Linux, and PPC{32,64 }/{Linux,AIX}.
There are also experimental ports to x86/MacOS X, x86/FreeBSD,
and x86/Solaris. We believe Valgrind is suitable for porting to any
typical RISC or CISC architecture, such as ARM or SPARC. VLIW
architectures such as IA64 would be possible but Valgrind’s use
of D&R would make reasonable performance harder to attain, as
VLIW code generation is more difficult. We also believe it can be
ported to any Unix-style OS; a port to Windows may be possible
but would be much more challenging. Porting to a new architecture
requires writing new code for the JIT compiler, such as an instruc-
tion encoder and decoder, and code to describe the new machine
state (i.e. register layout). Porting to a new OS requires some new
code for handling details such as signals and address space manage-
ment. Porting to a new architecture and/or OS requires some new
system call wrappers to be written. Memcheck (and other shadow
value tools) usually do not need to be changed if Valgrind is ported
to new platforms.

The robustness of Valgrind and Memcheck has slowly improved
over time. Earlier sections of this paper showed that several Val-
grind sub-systems have been re-implemented once or twice in an
effort to make them more robust. Also, we have gradually removed
all dependencies on external libraries, even the C library. Indeed,
since mid-2005 Valgrind has been able to run itself, which is no
mean feat considering how many strange things it does.

9 The SPEC benchmarks are sometimes used as a measure of robustness.
They are actually not particularly difficult to run—they stress a DBA tool’s
code generation well, but they are all single-threaded, compute-bound, not
particularly large, do not use many system calls, and do not do tricky things
with memory layout or signals. The “large projects” listed above stress a
DBA tool much more than the SPEC benchmarks.

5.3 Tool Instrumentation Capabilities

In this section, we compare Valgrind’s support for all nine shadow
value requirements against Pin [11], because Pin is the best known
of the currently available DBI frameworks, and the one that has
the most support for shadow values (after Valgrind). The following
comparison is based on discussions with two Pin developers [10].

Pin supports R5 (instrument start-up allocations), R8 (instru-
ment heap (de)allocations) and R9 (extra output) directly. It does
not support R6 (instrument system call (de)allocations) and R7 (in-
strument stack (de)allocations) directly, but provides features that
allow a Pin tool to manually support them fairly easily.

For R1 (provide shadow registers) Pin provides “virtual regis-
ters” which are register-allocated along with guest registers and
saved in memory when a thread is not running. Shadow registers
could be stored in them. However, virtual registers are not fully
first-class citizens. For example, there are no 128-bit virtual regis-
ters, so 128-bit SIMD registers cannot be fully shadowed, which
would prevent some tools (e.g. Memcheck) from working fully.

Pin provides no built-in support for R2 (provide shadow mem-
ory), so tools must cope with the non-atomicity of loads/stores and
shadow loads/stores themselves.'? For example, the Pin tool called
pinSEL [14], which uses shadow memory but not full shadow val-
ues, sets and checks an extra interference bit on every shadow load.
This lets it handle any thread switches or asynchronous signals that
occur between a load/store and a shadow load/store (both of which
can occur even on uni-processors under Pin). Multi-threaded pro-
grams running on multi-processors are even trickier, and pinSEL
does not handle them. In comparison, Valgrind’s thread serialisa-
tion and asynchronous signal treatment frees shadow value tools
from having to deal with this issue.

For R3 (instrument read/write instructions) Pin allows all regis-
ter and memory accesses to be seen. However, analysis code in Pin
is written as C functions, which can be inlined if they contain no
control flow. This means that SIMD instructions are again a prob-
lem; if a tool needs to use SIMD instructions in its analysis code
(as Memcheck does), these would have to be written in Pin using
(platform-specific) inline assembly code. This is caused by Pin us-
ing C&A and its method for writing analysis code (C code) having
less expressivity than client code (machine code).

R4 (instrument read/write system calls) is another stumbling
block; it can be done manually within a tool via Pin’s system call
instrumentation, but would require a large effort—each shadow
value tool would essentially need to reimplement Valgrind’s system
call wrappers.

5.4 Tool Performance

We performed experiments on 25 of the 26 SPEC CPU2000 bench-
marks (we could not run galgel as gfortran failed to compile it).
We ran them with the “reference” inputs in 32-bit mode on a 2.4
GHz Intel Core 2 Duo with 1GB RAM and a 4MB L2 cache run-
ning SUSE Linux 10.2, kernel 2.6.18.2. We compared several tools
built with Valgrind 3.2.1: (a) Nulgrind, the “no instrumentation”
tool; (b) ICntl, an instruction counter which uses inline code to in-
crement a counter for every instruction executed; (c) ICntC, like
ICntl but uses a C function call to increment the counter; and (d)
Memcheck (with leak-checking off, because it runs at program ter-
mination and so would cloud the comparison). Table 2 shows the
slow-down factors of these tools.

Lightweight tools. The mean slow-down of 4.3x for the no-
instrumentation case (Nulgrind) is high compared to other frame-
works. This is consistent with other researchers’ findings—a pre-

107t does have thread-locking primitives, but they would be too coarse-
grained to be practical for use with shadow memory.

[Program [Nat.(s) [Nulg. ICntl ICntC Memc. |
bzip2 192.7 3.5 7.2 10.5 16.1
crafty 92.4 6.9 12.3 22.5 36.0
eon 408.5 7.5 11.8 21.0 514
gap 131.3 4.0 9.1 13.5 25.5
gce 90.0 5.3 9.0 14.1 39.0
gzip 212.1 3.2 5.9 9.0 14.7
mcf 87.0 2.0 3.5 54 7.0
parser 218.9 3.6 7.0 104 17.8
perlbmk 179.6 4.8 9.6 14.6 27.1
twolf 262.5 3.1 6.5 10.7 16.0
vortex 86.7 6.5 11.4 17.8 38.7
vpr 149.4 4.1 7.7 11.3 16.4
ammp 345.2 34 6.5 9.1 32.7
applu 583.0 5.2 14.1 28.1 19.7
apsi 469.0 34 8.2 12.5 16.4
art 100.4 4.7 94 13.7 24.0
equake 118.2 3.8 8.4 12.4 17.1
facerec 280.9 4.7 8.2 12.2 17.4
fma3d 284.7 4.1 94 16.2 26.0
lucas 183.5 3.7 7.1 10.8 24.8
mesa 148.9 5.9 10.3 15.9 57.9
mgrid 809.1 3.5 9.8 14.4 16.9
sixtrack 355.7 5.6 134 18.3 20.2
swim 388.2 3.2 11.9 15.3 10.7
wupwise 192.1 7.4 11.8 17.3 26.7

geo. mean | [43 8.8 13.5 221 |

Table 2. Performance of four Valgrind tools on SPEC CPU2000.
Column 1 gives the program name; integer programs are listed be-
fore floating-point programs. Column 2 gives the native execution
time in seconds. Columns 3—6 give the slow-down factors for each
tool. The final row shows each column’s geometric mean.

vious comparison [11] showed that Valgrind is 4.0x slower than
Pin and 4.4x slower than DynamoRIO on the SPEC CPU2000 inte-
ger benchmarks in the no-instrumentation case, and 3.3x and 2.0x
slower for a lightweight basic block counting tool.!

Re-implementing chaining in Valgrind would improve these
cases somewhat. However, these lightweight tools are exactly the
kinds of tools that Valgrind is not targeted at, and Valgrind will
never be as fast as Pin or DynamoRIO for these cases. For example,
consider Valgrind’s use of a D&R representation. For a simple tool
like a basic block counter, D&R makes no sense. Rather, the use of
D&R is targeted towards heavyweight tools. For this reason, we do
not repeat such comparisons with lightweight tools.

The difference between ICntl and ICntC shows the advantage
of inline code over C calls. ICntl could be further improved by
batching counter increments together.

Heavyweight tools built with Valgrind. Memcheck’s mean slow-
down factor is 22.2x. Other shadow value tools built with Valgrind
have similar or worse slow-downs. TaintCheck ran 37x slower on
an invocation of bzip2 [20], but had better performance on an I/O-
bound invocation of the Apache web server. Annelid ran a subset of
the SPEC CPU2000 benchmarks (“train” inputs) 35.2x slower than
native [16]. McCamant and Ernst’s secret tracker has slow-downs
“similar to Memcheck... 10-100x for CPU-bound programs” [13].
Redux did much more expensive analysis and was not practical for
anything more than toy programs [17]. Slow-down figures are not
available for DynCompB [7].

" But the measured Valgrind tool used a C function to increment the
counter; the use of inline code would have narrowed the gap.

None of these tools are as optimised as Memcheck, particularly
their handling of shadow memory; more aggressive implementa-
tions would have slow-downs closer to Memcheck’s.

Other heavyweight tools. Hobbes’ slow-down factors for SPEC
CPU2000 integer programs were in the range 30-187x. However,
Hobbes used a built-from-scratch binary interpreter rather than a
JIT compiler, so this is a poor comparison point.

TaintTrace [6] is built with DynamoRIO, implements shadow
registers within the tool itself, and has an mean slow-down factor of
5.5x for a subset of the SPEC CPU2000 benchmarks. LIFT [23] is
built with StarDBT, a dynamic binary translation/instrumentation
framework developed by Intel. It has a mean slow-down fac-
tor of 3.5x for a similar subset of the SPEC CPU2000 integer
benchmarks. These two tools are much faster than Memcheck
and TaintCheck. This is partly because they are doing a simpler
analysis—they track one taintedness bit per byte, whereas Mem-
check tracks one definedness bit per bit and does various other
kinds of checking, and TaintCheck records four bytes per byte in
order to record origins of tainted values.

More importantly, they are faster because they are less robust
and have more limited instrumentation capabilities, in several ways.

e TaintTrace reserves the entire upper half of the address space
for shadow memory, which makes shadow memory accesses
trivial and inlinable, but: (a) it wastes 7/8 of that space (7/16 of
the total address space) because each shadow byte holds only a
single taintedness bit, and (b) reserving large areas of address
space works most of the time on Linux, but is untenable on
many other OSes—e.g. Mac OS X, AIX, and many embedded
OSes put a lot of code and data in the top half of the address
space [19]. In comparison, Memcheck instead uses a shadow
memory layout that is slower—Ilargely because it requires calls
to C functions for shadow loads and stores—but more flexible
and thus more robust, and shadow memory operations account
for close to half of Memcheck’s overhead [19].

LIFT translates 32-bit x86 code to run on x86-64 machines.
x86-64 machines have eight extra integer registers which are
not used by x86 programs which make shadow registers very
easy to implement. The translation also avoids the problems of
fitting shadow memory into the 32-bit address space, as LIFT
has a 64-bit address space to work in. In one way, this is the
ideal approach—having twice the registers and (more than)
twice as much memory is perfect for shadow values. However,
it is only narrowly applicable.

If LIFT was implemented without binary translation the extra
register pressure would not be great—its shadow values are
compact (one bit per byte) and so eight shadow registers can
be squeezed into a single host register—and so the slow-down
might be moderate, particularly on a platform with lots of reg-
isters such as PowerPC. But for Memcheck, TaintCheck, or any
other tool that has larger shadow register values, the slow-down
would be greater.

Neither TaintTrace nor LIFT handle programs that use FP or
SIMD code [5, 22]. We have found that handling these cases
by adding them later is more difficult than it might seem. The
hybrid IR used by Valgrind (mentioned in Sections 3.5 and 3.6)
had FP/SIMD handling added (via C&A) only once the integer
D&R part was working. This meant that the Valgrind and Mem-
check’s performance on FP/SIMD code was much worse than
on integer code because the x86 FP/SIMD state had to be fre-
quently saved and restored (even though we optimised away re-
dundant ones whenever possible). Also, the instrumentation ca-
pabilities were worse for FP/SIMD code, and Memcheck han-
dled such code less accurately [25]. The rotating x87 FP regis-

ter stack is particularly difficult to handle well with C&A code
representation.

e Neither TaintTrace nor LIFT handle multi-threaded programs.

TaintTrace and LIFT show that shadow value tools can be im-
plemented in frameworks other than Valgrind, and have better per-
formance than Memcheck, if they use techniques that are applica-
ble to a narrower range of programs. We believe that the robust-
ness and instrumentation capabilities of TaintTrace and LIFT could
be improved somewhat, and that such changes would reduce their
performance. But in general, we believe that making these tools
as robust and accurate as Memcheck would be very difficult given
that they are built with DBI frameworks that do not support all nine
shadow value requirements.

Nonetheless, research prototypes with a narrower focus can
identify new techniques that are applicable in real-world tools. For
example, LIFT uses clever techniques to avoid performing some
shadow operations; these might be adaptable for use in Memcheck.

Although there is some scope for improving Memcheck’s per-
formance (by adding chaining to Valgrind’s core and using LIFT’s
techniques for skipping shadow operations), given its other charac-
teristics, we believe that its performance is reasonable considering
how much analysis it does [25, 19]. Memcheck’s popularity shows
that programmers are willing to use a tool with a large slow-down if
its benefits are high enough, and it is easily the fastest shadow value
tool we know of that is also robust and general. We also believe and
that Valgrind’s design features—such as its unique D&R IR with
first-class shadow registers—are crucial in achieving this reason-
able performance despite the challenging requirements of shadow
values.

5.5 Summary

Every DBI framework has a number of important characteristics:
ease of tool-writing, robustness, instrumentation capabilities, and
performance. Robustness and performance are also important for
DBA tools built with DBI frameworks, and tool designs crucially
affect these characteristics. Performance has traditionally received
the most attention, but the other characteristics are equally impor-
tant. Trade-offs must be made in any framework or tool, and all
relevant characteristics should be considered in any comparisons
between frameworks and/or tools.

For lightweight DBA, Valgrind is less suitable than more
performance-oriented frameworks such as Pin and DynamoRIO.
For heavyweight DBA, Valgrind has a uniquely suitable combina-
tion of characteristics: it makes tools relatively easy to write, allows
them to be robust, provides powerful instrumentation capabilities,
and allows reasonable performance. These characteristics are ex-
emplified by Memcheck, which is highly accurate, widely used,
and reasonably fast.

6. Related Work

There are many DBI frameworks; Nethercote [15] compares eleven
in detail (that publication also discusses shadow values, but in less
detail than this paper). They vary in numerous ways: platforms
supported, instrumentation mechanisms, kinds of analysis code
supported, robustness, speed, and availability. Judging by recent
literature, those that are both widely-used and actively maintained
are Pin [11], DynamoRIO [3], DIOTA [12], and Valgrind.

We compared Valgrind to Pin in Section 5. As for other DBI
frameworks, they all provide less shadow value support than Pin;
in particular, they provide no support for R1 (provide shadow
registers), such as virtual registers or register re-allocation. We
believe R1 is the hardest requirement for a tool to fulfil without help
from its framework; without such support, tools have to find ways
to “steal” extra registers for themselves. This is possible to some

extent, but very difficult to do on the scale required for shadow
values in a manner that is robust and gives reasonable performance.

The nine shadow value tools we know of were discussed in
Section 1.2 and 5.4. Six of them were built with Valgrind.

Shadow value tools are not only applicable at the binary level.
For example, Perl’s “taint mode” [29] and Patil and Fischer’s
bounds checker for C [21] implement analyses similar to those of
TaintCheck and Annelid (see Section 1) at the level of source code.
The underlying tool ideas are very similar, but the implementation
details are completely different.

7. Future Work and Conclusion

Valgrind is a widely-used DBI framework. It is designed to support
DBA heavyweight tools, such as shadow value tools, and therefore
can be used to build most conceivable DBA tools. This paper
has identified the requirements of shadow value tools and how
Valgrind supports them, and shown that Valgrind inhabits a unique
part of the DBI framework design space. We have focused more
on Valgrind’s instrumentation capabilities than its performance,
because (a) they are an equally important but less-studied topic,
and (b) they distinguish Valgrind from other related frameworks.

We think there are two main areas of future research for Val-
grind. First, we want to find a way to avoid forcing serial thread
execution in a way that does not compromise the correctness of
shadow value tools. This will become increasingly important as
multi-core machines proliferate. Second, Memcheck has already
shown that heavyweight DBA tools can help programmers greatly
improve their programs. We think there is plenty of scope for new
heavyweight DBA tools, particularly shadow value tools, and we
hope Valgrind will be used to build some of these tools.

Acknowledgments

Thanks to: Greg Lueck for his Pin expertise; Mike Bond, Kim
Hazelwood and the anonymous reviewers for reviewing this paper;
and everyone who has contributed to Valgrind over the years, par-
ticularly Jeremy Fitzhardinge, Tom Hughes and Donna Robinson.

References

[1] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In Proceedings of PLDI 2000, pages
1-12, Vancouver, Canada, June 2000.

[2

—

D. Bruening. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. PhD thesis, MIT, Cambridge, Mass., USA,
September 2004.

D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Proceedings of CGO’03, pages
265-276, San Francisco, California, USA, March 2003.

[4] M. Burrows, S. N. Freund, and J. L. Wiener. Run-time type checking
for binary programs. In Proceedings of CC 2003, pages 90-105,
Warsaw, Poland, April 2003.

[5] W. Cheng. Personal communication, November 2006.

[6] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient
flow tracing with dynamic binary rewriting. In Proceedings of ISCC
2006, pages 749-754, Cagliari, Sardinia, Italy, June 2006.

[7] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst. Dynamic
inference of abstract types. In Proceedings of ISSTA 2006, pages
255-265, Portland, Maine, USA, July 2006.

[8] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks
and access errors. In Proceedings of the Winter USENIX Conference,
pages 125-136, San Francisco, California, USA, January 1992.

[9] K. Hazelwood. Code Cache Management in Dynamic Optimization
Systems. PhD thesis, Harvard University, Cambridge, Mass., USA,
May 2004.

[3

[t}

[10] G. Lueck and R. Cohn. Personal communication, September—
November 2006.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building customized
program analysis tools with dynamic instrumentation. In Proceedings
of PLDI 2005, pages 191-200, Chicago, Illinois, USA, June 2005.

[12] J. Maebe, M. Ronsse, and K. De Bosschere. DIOTA: Dynamic
instrumentation, optimization and transformation of applications. In
Proceedings of WBT-2002, Charlottesville, Virginia, USA, September
2002.

[13] S. McCamant and M. D. Ernst. Quantitative information-flow
tracking for C and related languages. Technical Report MIT-CSAIL-
TR-2006-076, MIT, Cambridge, Mass., USA, 2006.

[14] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operation system effects to guide application-level
architecture simulation. In Proceedings of SIGMetrics/Performance
2006, pages 216-227, St. Malo, France, June 2006.

[15] N. Nethercote. Dynamic Binary Analysis and Instrumentation. PhD
thesis, University of Cambridge, United Kingdom, November 2004.

[16] N. Nethercote and J. Fitzhardinge. Bounds-checking entire programs
without recompiling. In Informal Proceedings of SPACE 2004,
Venice, Italy, January 2004.

[17] N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer.
ENTCS, 89(2), 2003.

[18] N. Nethercote and J. Seward. Valgrind: A program supervision
framework. ENTCS, 89(2), 2003.

[19] N. Nethercote and J. Seward. How to shadow every byte of memory
used by a program. In Proceedings of VEE 2007, San Diego,
California, USA, June 2007.

[20] J. Newsome and D. Song. Dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on commodity
software. In Proceedings of NDSS ’05, San Diego, California, USA,
February 2005.

[21] H. Patil and C. Fischer. Low-cost, concurrent checking of pointer and
array accesses in C programs. Software—Practice and Experience,
27(1):87-110, January 1997.

[22] E. Qin. Personal communication, March 2007.

[23] FE. Qin, C. Wang, Z. Li, H. Kim, Y. Zhou, and Y. Wu. Lift:
A low-oeverhead practical information flow tracking system for
detecting security attacks. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture (Micro’06), Orlando,
Florida, USA, December 2006.

[24] K. Scott, J. W. Davidson, and K. Skadron. Low-overhead software
dynamic translation. Technical Report CS-2001-18, University of
Virginia, Charlottesville, Virginia, USA, 2001.

[25] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In Proceedings of the USENIX'05
Annual Technical Conference, Anaheim, California, USA, April
2005.

[26] O. Traub, G. Holloway, and M. D. Smith. Quality and speed in linear-
scan register allocation. In Proceedings of PLDI ’98, pages 142—151,
Montreal, Canada, June 1998.

[27] The Valgrind Developers. 2nd official Valgrind survey, September
2005: full report.
http://www.valgrind.org/gallery/survey_05/report.
txt.

[28] The Valgrind Developers. Valgrind.
http://www.valgrind.org/.

[29] L. Wall, T. Christiansen, and J. Orwant. Programming Perl. O’Reilly,
3rd edition, 2000.

