Efficient Implementation of the Smalitalk-80 System

I.. Peter Deutsch
Xerox PARC, Software Concepts Group

Allan M. Schiffman
Fairchild Laboratory for Artificial Intclligence Rescarch

ABSTRACT

‘The Smalltalk-80° programming language includes dynamic
storage allocation, full upward funargs, and universally
polymorphic procedures; the Smalltalk-80 programiming system
features interactive exccution with incremental compilation, and
implementation portability. These features of modern
programming systems arc among the most difficult to implement
cfficicntly, cven individually. A new implementation of the
Smalltalk-80 system, hosted on a small microprocessor-based
computer, achieves high performance while retaining’ complete
{object code) compatibility with cxisting implementations. ‘This
paper discusses the most significant optimization techniques
developed over the course of the project, many of which are
applicable to other languages. ~ 'The key idea is Lo represent
certain runtime state (both code and data) in more than one
form, and o convert between forms when nceded.

*Smalkalk-80 is a trademark of the Xerox Corporation.
BACKGROUND

The Smalltalk-80 system is an object-oriented programming
language and interactive programming environment. ‘The
Smalltalk-80 language includes many of the most difficuit-to-
implement features of modern programming languages: dynamic
storage allocation, full upward funargs, and call-time binding of
procedure names o actual procedures based on dynamic type
information, somctimes called message-passing. ‘The interactive
environment includes a full complement of programming tools:
compiler, debugger, cditor, window system, and so on, all written
in the Smalltalk-80 language itsclf. A detailed overview of the
systern appears in [SCG 81]. |Goldberg 83] is a technical
reference for both the non-interactive programmer and the
system implementor; [Goldberg 84] is a reference manual for the
interactive system. .

SPECIAL DIFFICULTIES

‘The standard Smalltalk-80 system implementation is based
on an idcal virtual machine or v-machine. ‘The compiler
generates code for this machine, and the implementor’s
documentation describes the system as an interpreter for the v-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0297 $00.75

297

machine instruction set, similar to the Pascal P-system [Ammann
75] [Ammann 77]. One unusual feature of the Smalltalk-80 v-
machine is that it makes runtime state such as procedure
activations visible to the programmer as data objects. This is
similar to the “spaghcetti stack™ model of Interlisp [XSIS 83], but
morc straightforward: Interlisp uses a programmer-visible
indirection mechanism to reference procedure activations,
whercas the Smalltalk-80 programmer treats procedure
activations just like any other data objects.

The Smalltalk-80 language approaches programming with
generic data types through message-passing and dynamic typing.
To invoke a procedure (method in Smalltalk-80 terminology), a
message is sent to a data object (the receiver), which selects the
method to be exccuted. ‘This means that ¢ method address must
be found at runtime. At a given lexical point in the code, only
the message name (selector) is known. To perform a message
send, the data type (class) of the receiver is extracted, and the
selector is uscd as a hash index into a table of the message
dictionary of the class, which maps sclectors to methods. The
task of method-lookup is complicated by the inheritance property
of classes -- a class may bc defined as a subclass to another,
inheriting all of the mcthods of the superclass. If the initial
method-lookup fails, the lookup algorithm trics again using the
message dictionary of the superclass of the recciver's class,
continuing in this way up the class hicrarchy until a mcthod
corresponding to the sclector is found or the top of the
inheritance hicrarchy is reached.

The Smalltalk-80 language uses the organization of objects
into classes to provide strong information hiding. Only the
methods associated with a given class (and its subclasscs) can
access dircctly the state of an instance of that class. All access
from “outside”™ must be through messages. Because of this, a
Smalltalk-80 program must often make procedure calls to access
state where languages such as Pascal could compile a direct
access to a ficld of a record. This makes the performance of the
mcthod-lookup algorithm cven more critical.

IMPLEMENTATION OUTLINE

The purpose of the rescarch described here was to build a
Smailtatk-80 system with acceptable performance on a relatively
inexpensive, microprocessor-based computer; specifically, to
discover how to implement the basic data and code objects of
the Smatlltalk-80 system in a way that still conformed to the v-
machine specification, but were more suitable for conventional
hardwarc. (As of carly 1982, the only implementations that ran
at acceptable speed were on - non-commercial, user-
microprogrammable machincs, as described in [Krasner 83)
[lampson 81)) Thc system specification in [Goldberg 83)
includes the definition of internal data structures and object code
representation for the virtual machine. Indced, much of the
system code depends on these definitions. We chose to take
these dcfinitions as given, rather than alter the system code.

This was motivated partly by a dcsire to retain object-code
portability, and party by a desire not to complicate the
description of tHe Smalltalk-80 machine model. '

‘The single principle that undcilics all the results reported
herc is dynamic change of reprcsentation. By this we mcan that
the same information is represented in more than one
(structurally different) way during iis lifctime, being converted
transparcntly between representations as necded for cfficient use
at any moment. An important spccial case of this idca is
caching: one can think of information in a cache as a different
representation of the same information (considering contents and
accessing information together) in the backup micmory. In the
implementation described in this papcer, we applied this principle
to several different kinds of runtime information in the
Smalltalk-80 system.

* We dynamically translatc v-code (i.c., codc in the
instruction set of the v-machinc) into code that cxecutes
directly on the hardware without interpretation, the
native code or n-code. ‘Franslated code is cached: it is
regencrated rather than paged.

* We represent procedure activation records (contexts in
Smalitalk-80 parlance) in cithcr a machine-oriented form,
when they are being used to hold exccution state, or in
the form of Smalltalk-80 data objects, when they are
being treated as such.

* We usc scveral different caches to speed up the
polymorphic search required at each procedure
invocation. 1In the best case, which applics over 90% of
the time, a Smalltalk-80 procedure invocation requires
only one comparison operation in addition to a
conventional procedure linkage.

* Using the techniques in [Dcutsch&Bobrow 76), we
represent reference count information for automatic
storage management in a way that climinates
approximately 85% of the refercnce counting operations
required by a standard implementation.

CODE TRANSLATION

Targeting code to a portable v-machine has been used in
other language implcmentations. Usually v-code targeting is
used only to avoid having multiple (one per target machine)
code-gencration phases of the compiler; a sccondary benefit is
that v-code is usually much more compact than code for any real
machine. Since the Smalltalk-80 compiler is just onc tool
available in the same interactive cnvironment used for cxecution,
and other tools besides the compiler must be able to examine the
machine state, the v-machine approach is even more attractive in
reducing the cost of rehosting.

PERFORMANCE ISSUES

To rehost the system, an implementor must cmulate the v-
machine on the target hardware, cither in microcode or in
softwarc. This normally incurs a severe performance penalty
arising from scveral factors,

* Proccssors have specialized hardware for fetching,
decoding, and dispatching their own native instruction
set. This hardware is typically not available to the
programmer (although it may be available at the
microprogram level), and thercfore not useful to the v-
machine interpreter in its time-consuming operation of
instruction fetching, decoding, and dispatching.

* The v-machine architecture may bc substantially
different from that of the undcrlying hardware. For
example. many v-machincs, including both the P-system

298

and Smalltalk-80 v-machines, use a stack-oricnted
architecture for convenience in code gencration, but
most available hardwarc machines cxceute register-
oricnted code much more cfficiently than stack-oricnied
code.

* The basic operations of the v-machinc may be
relatively expensive to implement, even though the
overall algorithm represented by a v-code program may
not bc much more cxpensive than if it were
implemented in the hardware instruction set. For
cxample, cven though a naive interpreter for the
Smatltalk-80 v-code must perform reference counting
operations cvery time it pushes a variable value onto the
stack, a sequence of several instructions often has no net
effect on reference counts.

If the v-code were translated to n-code after normal
compilation of a source program to v-code, the interpreter’s
overhead could be climinated and some optimizations become
possible. One technique for eliminating part of the overhead of
interpretation is threaded code [Bell 73] [Moore 74]. In this
approach, v-code consists of an actual sequence of subroutine
calls on runtime routines. This technique docs reduce the
overhcad for fetching and dispatching v-code instructions,
although it docs not help with operand decoding, or cnable
optimizations that span more than onc v-instruction. We prefer
to translate v-code to in-linc n-code in a more sophisticated way.

Naive translation from v-code to n-codc is a process
somcthing like macro-cxpansion. In fact, [Mitchell 71] observed
that a translator can be derived very simply from an interpreter
by having the interpreter save its action-routine code in a buffer
rather than cxccuting it. If the computation performed by
individual action routincs is small relative to the computation
needed for the interpreter loop, the benefit of even this simple
kind of translation will be great.

‘I'ranslation-time can also be considered an opportunity for
peephole optimization or cven mapping stack references to
registers [Pittman 80). Translation back-ends for portable
compilers have been implemented [Zcllweger 79).

DYNAMIC 'l'RANSLATION_

Because the Smalltalk-80 v-code is a compact representation
that captures the basic scmantics of the language, n-code will
typically take up much more space than v-code. (In the
implementation discussed in this paper, n-code takes about S
times as much space as v-code) This would place severe stress
on a virtual memory system if the n-code were being paged.
However, since n-code is derived algorithmically from v-code,
therc is no need to keep it permanently: it can be recomputed
when needed, if this is more efficient than swapping it in from
sccondary storage. ‘This leads us to the idca of translating at
runtime. (The idea of dynamic translation appears in [Rau 78],
where it is applicd to translation from v-code to microcode.)
When a procedure is about to be cxecuted, it must cxist in n-
code form. If it does not, the call faults and the translator takes
control. ‘'The translator finds the corresponding v-code routine,
translates it, and completes the call. Since, as mentioned carlier,
the translation process i$ more akin to macro-cxpansion than
compilation, translation time for a v-code byte is comparable to
the time taken to interpret it

We consider the translation approach, and dynamic
translation in particular, to be the most interesting part of our
rescarch, since it muotivated the work on multiple state
representations described below. A later section of this paper
presents the cxperimental results that support our contention that
dynamic translation is an cffective technique in a substantial
region of current technological paramecters,

MAPPING STATE AT RUNTIME

Since the definition of the Smalltalk-80 v-machine makes
runtime state such as procedure activations visible to the
programmer as data objects, an implementation bascd on n-code
must find a way to make the state appear to the programmer as
though it were the state of a v-machine, regardless of the actual
representation. The system must maintain a mapping of n-
machine state to v-machine statc; in particular, it must keep the
v-code available for inspection.

How can we guarantee that all attempts to access a quantity
requiring representation mapping are detected? The structure of
the Smalitalk-80 language guarantces that the only code that can
access an object of a given class dircetly is the code that
implements messages sent to that class. ‘Thus, the only code that
can directly access the parts of an object requiring mapping is
code associated with that object’s class. Recall that all the code
in the Smalltalk-80 system is written in the Smaltalk-80
language, hence compiled into v-code. When we translatc a
procedure from v-code to n-code that is associated with a class
whosc representation may require mapping, we generate special
n-code that calls a subroutine to ensurc that the object is
represented in a form where accesses to its named parts are
mcaningful.

‘The most obvious quantity requiring mapping is the return
address (PC) in an activation record, which refers to a location in
the n-code procedure rather than in the v-code. Although there
is no simple algorithmic correspondence between the v-PC and
the n-PC values, the v-PC nced only be available when a
program attempts to inspect an activation as a data object. At
that moment, the system can consult (or compute) a table
associated with the procedurc that gives the correspondence
between n- and v-PC values.

We can greatly reduce the size of the mapping tables for PC
values by obscrving that the PC can only be accessed when an
activation is suspended, ic., at a procedure call or
interrupt/process-switch. If we are willing to accept somewhat
greater fatency in a Smalltalk-80 program's response to
interrupts, we can choosc a restricted but sufficient set of
allowable interrupt points, and only store the mapping tables for
thosc points. This is what our implementation does: interrupts

arc only allowed at, and PC map cntries are only stored for, all

procedure calls and backward branches (the latter since interrupts
must be allowed inside loops).

MULFIPLE REPRESENTATIONS OF CONTEXTS

As mentioned carlier, the format of procedure activation
records are part of the Smalltalk-80 v-machine specification.
Contexts are full-fledged data objects; they have identifiable
ficlds which can be accessed and they respond to messages. A
context is created for cvery message-send. ‘There is also syntax
in the language for creating contexts whosc activation is deferred,
called block comtexts in Smalltalk-80 terminology, which
correspond to the functionals, closures, or funargs of other
languages. Most control structurcs in the Smalltalk-80 system are
implemented with block contexts.

‘The fact that contexts are standard data objects implies that
they must be created like data objects, i.c., allocated on a heap
and reclaimed by garbage collection or reference counting.
Unfortunately, conventional machines are adapted for calling
sequences that create a new activation record as a stack frame,
storing suspended state in predefined slots in the frame,
Actually implementing contexts as hcap objects results in a
serious performance penalty.

Mcasurements show that cven in Smalltalk-80 programs,
more than 85% of all contexts behave like procedure activations
in conventional languages: they arc crcated by a call, never

299

referenced as a data object, and can be freed as soon as control
returns from them. (Notc that any context in which a block
context is created does not satisfy this criterion.) Such contexts
arc candidates for stack-frame representation. (An unpublished
cxperimental implementation of an carlier Smalltalk system used
lincar stacks. but did not dcal properly with contexts that
outlived their callers.)

Stack allocation of contexts solves onc of the two major
efficicncy problems associated with treating contexts like other
objects, namcly the overhcad of allocating the contexts
themselves. {Deutsch&Bobrow 76] shows how to solve the other
problem, of reference counting operations apparcntly being
required on cvery store into a local variable. With these two
problems solved, we can usc the hardwarc subroutine call,
return, and store instructions dircetly.

Our system has scveral types of context representations. A
message-send creates a new context in a representation optimized
for exccution; a frame is allocated on the machine’s stack (with
some spare slots) by the usual machine instructions. In the
simple casc, where no reference is ever made to the context as a
data object, the machine’s return instruction simply pops the
frame off the stack when control returns from the context. ‘This
kind of context, which lives its life as a stack frame, we call
volatile.

At the other extreme, we store contexts in a format
compliant with the virtual machine specification, which can be
manipulatcd as data items. We call this representation stable.

‘The third representation of a context, called hybrid, is a stack
frame that incorporates header information to make it look partly
like an ordinary data object. A volatile context is converted to
hybrid when a pointer is generated to it. Since this makes it
possible for programs to refer to the context as an object, we fill
in slots in the frame corresponding to the header ficlds in an
ordinary object. This pscudo-object is tagged as being of a class
we name "DummyContext.” A block of memory is allocated,
and its address is stored in the context in case the context must
be stabilized in the future. Since there may be pointers to this
context, it cannot be rcturned from in a normal way, so the
return address is copied to another slot in the frame and
replaced with the address of a clean-up routine that stabilizes the
context on return.

When a message is seat to a hybrid context, the send fails
(there arc no procedures defined for the DummyContext class),
and a routine is called to convert the hybrid context to the
stabilized form. At this point PC mapping comcs into play; the
n-PC in the activation is converted to a v-PC for the stabilized
representation. Pointers to the hybrid context are switched to
refer to the stable context (this is simple in our system, which
uses an indircction table for all objects). After the context has
been stabilized, the failed message is re-sent to the stable form.

A stable context is not suitable for exccution. Before a
stabilized context can be resumed, it is reconstituted on the stack
as hybrid. Again, this mcans that the n-PC must be
reconstructed from the v-PC. Usually the v-PC docs not change
during the stable period, so our system includes a onc-clement
cache in cach n-code procedure for the most recent v-PC/n-PC
pair, to avoid having to run the mapping algorithm.

Block contexts are “born™ in stable form, sincc the whole
purpose of closurcs is to provide a representation for an
cxccution context which can be invoked later.

IN-LINF, CACHING OF METHOD ADDRESSES

Message-passing is applied down to the simplest opcrations
in Smalltalk. ‘Ihe system provides a varicty of predefined
classes: the most basic operations ons clementary data types (such
as addition of intcgers) arc performed by primitives implemented

by the kernel of the system, rather than by Smalltalk routines,
but there is no distinction drawn at the language level. Since
message-sends are so ubiquitous, they must be fast; the opcration
of mecthod-lookup is both cxpensive and critical.

Al cxisting Smalltalk-80 implementations accelerate method-
lookup by using a method cache, a hash table of popular method
addresses indexed by the pair (recciver class, message selector).
"This simple technique typically improves system performance by
20-30%. More cxtensive measurcinents of this improvement
appcar in [Krasner 83].

Further performance improvements are suggested by the
abscrvation of dynamic locality of type usage. ‘I'hat is, at a given
point in code, the receiver is often the same class as the receiver
at the same point when the code was last executed. If we cache
the looked-up mcthod address at the point of send, subsequent
execution of the send code has the method address at hand, and
method-lookup can be avoided if the class of the recciver is the
same as it was at the previous exccution of this particular send.
Of course, the class of the receiver may have changed, and must
be checked against the class corresponding to the cached method
address.

In the implementation described here, the translator
gencrates n-code for sends unlinked -- as a call to the method-
lookup routine, with the sclector as an in-linc argument. The
mcthod-lookup routine links the call by finding the recciver
class, storing it in-line at the call point, and doing the method-
lookup (like other implementations, it uses a sclector/class
mcthod cache). When the n-code method address is found, it is
placed in-linc with a call instruction, overwriting the former call
to the lookup routine. The call is then re-exccuted. (Of course,
there may be no corresponding #-code mcthod, in which case the
translator is called first.) Note that this is a kind of dynamic
code modification, which is generally condemned in modern
practice. The n-method address can just as well be placed out-
of-linc and accessed indirectly; code maodification is more
cfficient, and we arc using it in a wcll-confined way.

The entry code of an n-code mcthod checks the stored
receiver class from the point of call against the actual receiver
class. [f they do not mawh, relinking must occur, just as if the
call had not yct been finked.

Since linked sends have n-code method addresses bound in-
linc, this address must be invalidated if the called n-code mcthod
is being discarded from memory. The idea of scanning all n-
code routines to invalidated linked addresses was initially so
daunting that we almost rejected the scheme. However, since n-
code only exists in main memory, invalidation cannot produce
time-consuming page faults. Furthermore, since the PC mapping
tables described carlier contain precisely the addresses of calls in
the n-code, no scarching of the n-code is required: it is only
nccessary to go through the mapping tables and overwrite the
call instructions to which the entrics point. (A scheme similar to
this may be found in {Moon 73})

For a fcw special sclectors like +. the translator gencrates
in-line code for the common case along with the standard send
code. For cxample, 4- gencrates a class check to verify that both
arguments arc small intcgers, native code for integer addition,
and an overflow check on the result. If any of the checks fail,
the send code is exccuted. ‘This is a space-time tradeoft justified
by measurcments that indicate that the overwhelining majority of
arithmetic operations involve only small integers, cven though
they arc (in principle) polymorphic likc all other operations in
the language.

EXPERIMENTAL RESULTS

Three aspects of our results deserve experimental validation:
the use of stable and volatile context represcntations, the use of

300

the one-clement in-linc cache and linked sends for accelerating
method-lookup, and the technique of v-code to n-code
transtation (specifically, dynamic translation).

CONTEXT REPRESENTATIONS

The dramatic drop in reference counting overhead obtained
by treating contexts specially has been documented clsewhere
(c.g., [Krasncr 83], scction 19). We also obtain a striking
cfficiency improvement by allocating contexts on a stack, and by
keeping their contents in cxccution-orienated form. Offsctting
these advantages, in our implementation there is an added
overhcad of converting contexts between volatileZhybrid and
stable forms, and of cnsuring that a context accessed as a data
object (cither by sending it a message or dircctly while running a
incthod implemented in a context class) is in stable form.

To cvaluate the performance advantage of lincar context
allocation and volatile rcpresentation, we compared our code for
allocating and deallocating contexts against code based on a
hypothetical design that used the standard object represcntation
for contexts, but did not reference-count their contents. This
code appears to take about 8 times as long to cxccute, which
would make it consume 12% of total exccution time compared to
1.5% for our present code.

I.ess than 10% of all contexts cver exist in other than volatile
form. Block contexts, which are created in stable form, and their
cnclosing context, which must be made hybrid so the block
context can refer to it, account for two-thirds of thesc; ncarly all
of the remainder arise from an implementation detail regarding
linking together fixed-size stack scgments. In all of our
measured cxamples, the time required for the conversion
between the stable and volatile form was under 3% of total
exccution time.

If the receiver of a message is not a hybrid context, there is
no overhead for making the check because it happens as part of
the normal method-lookup (recall that hybrid contexts appear to
be objects of a special class DummyContext with no associated
methods). Only when method-lookup fails is a check made
whether the receiver was actually a DummyContext. In the
normal operation of the system, messages are only sent to
contexts by the debugger and for cleanup during destruction of a
process, so the overail impact is ncgligible.

As discussed above, methods associated with context classes
must be translated specially, so that cach reference to an instance
variable checks to make sure the receiver is in stable form. The
time required for this check is negligible.

IN-LINE CACHE AND LINKED SENDS

Independent measurcments by us and by a group at U.C.
Berkeley confirm that the onc-element in-line cache is cffective
about 95% of the time. Mecasurcments reported in [Krasner 83)
indicate that a more conventional global cache of a reasonable
size is cffective about 85-90% of the time. 1t may be that an in-
line cache tends to lower the cffectivencss of the global cache,
since nost of the lookups that would succeed in the global cache
are now handled by the in-line cache, but we have no dircct
cvidence on this point.

Adding an in-line cachc to the simple translator described
below improved overall performance by only 9% On a
benchmark consisting almost cntirely of message sends where the
in-linc cache is guarantced valid, the in-line cache only improved
performance by 11%. ‘The improvement obtained by adding an
in-linc cache to the optimizing translator was also about 10%.
Our original hand-analysis indicated that the overall
improvement should be closer to 20%, and we cannot yet account
for the discrepancy. ‘The code produced by the optimizing

translator for the activate-and-return benchmark is a remarkable
47% faster than the code from the simple translator with the in-
line cache, suggesting that opcrations other than the overhcad
climinated by the in-line cache still dominates overall cxecution
time.

DYNAMIC CODIE TRANSLATION

Our implementation of the Smalltatk-80 v-machine is
designed to be casily switchable between different execution
strategics. We have implemented a straightforward interpreter, a
simple translator with almost no optimization, and a more
sophisticated translator. Both translators cxist in two variants,
with and without the in-linc cache described above. Switching
between strategics simply requires relinking the implementation
with a different set of modulces; the price in exccution speed paid
for this flexibility is ncgligible.

Our first cxperiment in code translation was a simple
translator that does little pcephole optimization and always
generates exactly 4 n-bytes per v-byte. (The latter restriction
climinated the nced for the PC mapping tables described carlier.)

Our sccond cxperiment was a translator that does significant
pecphole optimization. The code it gencrates keeps the top
clement of the v-machine stack in a machine register whenever
possible, and implements all v-instructions in-line except sends
and a few rare instructions like load current context. Even
arithmetic and rclational opcrations are implemented in-line, with
a call on an out-of-linc routinc if the operands arc not small
integers. The resulting code is bulky but fast.

To cstimate the space required by translated methods, we
have obscrved that the average v-method consists of 55% pointers
(litcral constants, message sclectors, and references to global
variables) and 45% v-instructions. Since our simple translator
expands each v-code byte to 4 n-code bytes, the expansion factor
for the mcthod as a whole is .55 4-(.45*4)=2.35. 'The version of
the simple translator that uses an in-line cache simply triples the
size of the pointer area, leaving room for a cached class and n-
mcthod pointer regardless of whether the pointer is a selector or
somcthing clsc. This expands the total size of mecthods by a
factor of (3*.55)+(4*.45)=3.45. I'hc obscrved cxpansion factors
for the optimizing translators appcar in the table below.

We ran the standard sct of Smalltalk-80 benchmarks
described in [Krasner 83), scction 9, using cach of our five
cxccution strategics. The normalized results arc summarized in
the following table:

Strategy Space Time
Interpreter 1.00 1.000
Simple translator, 235 0.686
no in-line cache

Simple translator 345 0.625
with in-finc cache :

Optimizing translator, 5.0 0.564
no in-linc cache

Optimizing translator 5.03 0.515

with in-line cache

‘I'he space figurc for the optimizing translator without the in-
line cache could be reduced at the expense of further slowing the
code down.

With respect to paging behavior in a virtual memory
cnvironment, we would like to comparc the following threc
cxccution strategies:

301

* Purc interpretation: only v-code exists; it is brought
into main memory as nceded.

* Static translation: n-code is gencrated siinultaneously
with v-code. Only n-code is nceded at cxecution time.
N-code is brought into memory as nceded.

* Dynamic translation: n-code is kept in a cache in main
memory; v-code is brought into memory for translation
as nceded.

Note that space taken by n-code in main memory trades off
against space for data. When main memory space is needed
(cither for n-code or for data), we have the option of replacing
data pages or discarding n-code. Unfortunately, since the work
described here has been carricd out in a non-virtual memory
environment, we have no cxperimental results on this topic.

CONCLUSIONS AND RELATED WORK

Perhaps the most important observation from our rescarch is
that we have demonstrated that it is possible to implement an
interactive system bascd on a demanding high-level language,
with only a modest incrcase in mecinory requirements and
without the use of any of the special hardware (special-purpose
microcode, tagged memory architecture, garbage collection co-
processor) often advocated for such systems, and with resulting
performance that users judge excellent. We have achicved this
by carcful optimization of the obscrved common cases and by
the plentiful use of caches and other changes of representation.

A related research project [Patterson 83} is investigating a
Smalltalk-80 implemientation that uses only n-code, on a specially
designed VLSI processor called SOAR. As discussed above, this
implementation requires rewriting the compiler, dcbugger, and
other tools that manipulate compiled code and contexts. We
expect some interesting comparisons between the two approaches
somctime in 1984, when the SOAR implementation becomes
opcrational.

We believe the techniques described in this paper are
applicable in varying degrees to other late-bound languages such
as Lisp, and to portable V-code-based language implementations
such as the Pascal P-system, but we have no current plans to
investigate these other languages.

ACKNOWLEDGMENTS

Thanks arc duc to Mike Braca, who programmed the I/O
kernel of our implementation; Bob Hagmann, who programmed
the optimizing code translator and made many contributions to
the design of the system; and Mark Roberts, who implemented
the disk file system and virtual memory capabilitics. Bob
Hagmann, Dan Ingalls, and Paul McCullough contributed
helpful comments on this paper, The Smalitalk-80 system itself
is owed to PARC SCG. Butler lampson gave helpful
suggestions during the carly project design phase.

RFEFERENCES

[Ammann 75] Ammann, U., Nori, Jensen, K., Nageli, H., “The
Pascal (P) Compiler Implementation Notes.” Institut Fur
Informatik, Fidgenossische T'echnische Hochschule, Zurich, 1975,

[Ammann 77) Ammann, U., “On codc generation in a Pascal
compiler.” Software Practice and Experience v7 # 3, June/July
1977, pp. 391-423.

[Belt 73] Bell, J. R., “Threaded Code.” Communications of the
ACM, v16 (1973) pp. 370-372.

[Deutsch & Bobrow 76] Deutsch, L. P., Bobrow, D. G., “An
cfficicnt, incremental, real-time garbage collector.”
Communications of the ACM, October 1976,

[Goldberg 83] Goldberg, A., Robson, 2., “Smalltalk-80: The
I.anguage and its Implementation.” Addison-Wesley, Reading,
MA, 1983. - :

[Goldberg 84] Goldberg. A., *Smalltalk-80: The Interactive
Programming Environment.” Addison-Wesley, Reading, MA,
1984.

[Krasner 83] Krasner, Glenn, Ed., “Smalltalk-80: Bits of History,
Words of Advice.” Addison-Wesley, Reading, MA, 1983,

[I.ampson 81} Lampson, B. W., Ed., “The Dorado: A Iligh-
Performance Personal Computer.” Xcrox PARC Report CSL-81-1,
Pzlo Alto, CA, January 1981.

[Mitchell 71] Mitchell, J. G., “The Design and Construction of
Flexible and Ffficient Interactive Programming Systems.” Ph.1).
dissertation, 1971, NTIS A1 712-721, in Outstanding Disscrtations
in the Computer Scicnces, Garland Publishing, New York (1978).

[Moon 73] Moon D., Ed., Maclisp Manual pp. 3-75 to 3-77, MIT Al
Laboratory Technical Report (1973).

{Moore 74] Muore, C. H., “FORTH: a New Way to Program a
Computer.” Astronomy and Astrophysics Supplement, # 15 (1974)
pp 497-511.

[Patterson 83] Patterson, ., Ed., “Smatltalk on a RISC:
Architectural lnvestigations (Proceedings of CS 292R).” University
of California, Berkeley, April 1983.

[Perkins 79] Perkins, D. R., Sites, R. .., “Machinc independent
Pascal code optimization.” ACM SIGPL.AN Notices v14 #
(August 1979) pp. 201-207. :

[Pittman 80] Pittman, T.J., A Practical Optimizer: Zero-Address to
Multi-Address Code.” M.S. thesis, University of California, Santa
Cruz, June 1980.

[Rau 78} Rau, B. R., “Levels of Representation of Programs and the
Architecture of Universal Host Machines.” Proceedings of Micro-
11, Asilomar, CA, November 1978.

{Richards 75} Richards, M., *“The portability of the BCPL.
compiler.” Software, Practice and Experience v1 (1971) pp. 135-
146.

{SCG 81] Software Concepts Group, spccial issuc on Smalltalk.
BYTE Magazine, volume 6, number 8, August 1981,

[XSIS 83] Masinter, L.. M., Ed., “Interlisp Reference Manual.”
Xcrox Special Information Systems, Pasadena, CA, 1983,

[Zcltweger 79) Zellweger, P. T., “Machinc-Independent
Optimization in SOPAIPILLA.” The S-1 Project 1979 Annual
Rceport (Chapter 8), Lawrence Livermore Laboratory (1979).

302

