
Purify User’s Guide
support@pure.com
http://www.pure.com

Version 4.0

IMPORTANT NOTICE

DISCLAIMER OF WARRANTY
Pure Software Inc. makes no representations or warranties, either express or
implied, by or with respect to anything in this guide, and shall not be liable for
any implied warranties of merchantability or fitness for a particular purpose
or for any indirect, special or consequential damages.

COPYRIGHT NOTICE
Purify, copyright 1992-1996 Pure Software Inc. All rights reserved.

Purify, PureCoverage, and Quantify are covered by one or more of U.S. Patent
Nos. 5,193,180, 5,335,344, and 5,535,329. Purify is licensed under Sun
Microsystems Inc.'s U.S. Pat. No. 5,404,499. Other U.S. and foreign patents
pending.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, photocopying, recording or
otherwise, without prior written consent of Pure Software Inc. No patent
liability is assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation of this book,
Pure Software Inc. assumes no responsibility for errors or omissions. This
publication and features described herein are subject to change without
notice.

The program and information contained herein are licensed only pursuant to
a license agreement that contains use, reverse engineering, disclosure and
other restrictions; accordingly, it is “Unpublished — rights reserved under the
copyright laws of the United States” for purposes of the FARs.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to the restrictions
as set forth in subparagraph (c) (1) (a) of the Rights in Technical Data and
Computer Software clause of the DFARs 252.227-7013 and FAR 52.227-19(c)
and any successor rules or regulations.

TRADEMARKS
Pure Software, PureCoverage, Quantify, PureLink, and Purify are U. S.
registered trademarks of Pure Software Inc. PureVision, PureDDTS,
WebTracker, WebTrackerLite, and the Pure Software logo are U. S.
trademarks of Pure Software Inc.

All other products or services mentioned in this guide are covered by the
trademarks, service marks, or product names as designated by the companies
who market those products.

Printed in the U.S.A. on recycled paper.

P U R I F Y U S E R ’ S G U I D E

Contents
Welcome to Purify

Getting started .xi

Mastering the basics .xi

Learning to use special features .xi

Using the reference chapters . xii

Using online Help . xii

Conventions used in this guide . xiii

Displaying the release notes . xiii

Installing Purify . xiii

Contacting technical support . xiv

1 Introducing Purify

When to use Purify . 1-2

Starting to use Purify . 1-3

Getting the most out of Purify . 1-5

Customizing Purify . 1-5

Using your debugger with Purify . 1-5

Calling Purify’s API functions . 1-6

Integrating Purify into makefiles and scripts 1-6

Using Purify with other Pure Software products 1-7

Using Purify with PureCoverage . 1-7

Using PureLink with Purify and PureCoverage 1-8

Using Purify with PureDDTS . 1-8

Using Purify with PureTestExpert . 1-8

Checking for memory errors . 1-9

Memory access errors . 1-9

Accessing through dangling pointers . 1-9
iii

Uninitialized memory reads . 1-10

Memory allocation errors . 1-10

Memory leaks . 1-11

Errors in third-party code and libraries 1-11

2 Finding Errors in Hello World

Before you start . 2-2

Building a Purify’d program . 2-3

Compiling and linking in separate stages 2-3

Running a Purify’d program . 2-4

Using the Purify Viewer . 2-5

Analyzing an ABR message . 2-6

Using line numbers and source filenames 2-7

Finding the exact location of the error . 2-8

Correcting the ABR error . 2-9

Looking at the file descriptors message 2-10

Understanding the memory leaked summary 2-11

Looking at the MLK error . 2-12

Looking at the exit status summary . 2-14

Rerunning a Purify’d program . 2-15

3 Memory Access Errors

How Purify finds memory access errors . 3-2

How Purify checks statically allocated memory 3-4

Notes and limitations . 3-5

Building the testHash example program . 3-6

Running the testHash program without Purify 3-7

Running the Purify’d testHash program . 3-8

Debugging the testHash program . 3-9

Debugging with dbx . 3-9

Debugging with xdb . 3-10

Reading uninitialized memory . 3-11

A UMR example . 3-11
iv

Finding the cause of the UMR error . 3-13

Correcting the UMR error . 3-13

Reading and writing beyond the bounds of an array 3-14

An ABW example . 3-14

Finding the cause of the ABW error . 3-15

Correcting the ABW error . 3-16

An ABR example . 3-16

Reading or writing freed memory . 3-17

An FMR example . 3-18

Finding the cause of the FMR error . 3-19

Correcting the FMR error . 3-20

Freeing unallocated or non-heap memory 3-21

An FNH example . 3-21

Finding the cause of the FNH error . 3-22

Correcting the FNH error . 3-23

4 Memory Leaks

How Purify reports memory leaks . 4-1

Notes and limitations . 4-3

Finding the memory leaks in testHash . 4-4

Finding the source of memory leaks . 4-6

Using your debugger to set breakpoints 4-7

Running purify_new_leaks . 4-8

Correcting the error . 4-10

Using the new leaks button . 4-10

Disabling memory leaked messages . 4-11

5 Analyzing File Descriptors

File descriptors in use messages . 5-1

File descriptor leak example . 5-3

Analyzing FIU messages . 5-4

Disabling FIU messages . 5-4

Notes and limitations . 5-4
v

6 Customizing Purify

Controlling Purify output . 6-2

Saving Purify output as ASCII text . 6-2

Saving Purify output to a view file . 6-3

Prestarting the Viewer . 6-5

Mailing Purify output to developers . 6-6

Using the -mail-to-user-option . 6-6

Protecting your run-time option settings 6-6

Annotating Purify’s output . 6-7

Customizing Purify messages . 6-9

Controlling the content and appearance of messages 6-9

Controlling message batching . 6-9

Customizing the thread summary message 6-10

Enabling JIT debugging . 6-11

Reporting Purify status at exit . 6-13

Running shell scripts at exit . 6-14

Customizing the Purify Viewer . 6-15

Customizing Purify scripts . 6-16

Customizing the program controls . 6-17

Managing cached object files . 6-19

Deleting cached object files . 6-19

7 Suppressing Purify Messages

Suppressing messages in the Viewer . 7-2

Selecting where to suppress a message 7-3

Making a suppression permanent . 7-3

Saving a suppression directive to another .purify file 7-3

Specifying suppressions in a .purify file . 7-4

Using "..." syntax . 7-4

Suppressing error messages in C++ code 7-5

Suppressing messages in the Hello World example 7-6

Displaying suppressed messages . 7-6

Removing and editing suppressions . 7-7
vi

Temporarily unsuppressing messages . 7-7

Using the unsuppress directive . 7-8

Sharing suppressions between programs 7-9

Suppression precedence . 7-9

Creating suppressions for specific operating systems 7-9

Using the -suppression-filenames option 7-10

8 Setting Watchpoints

When to use watchpoints . 8-1

Why use Purify’s watchpoints? . 8-2

Calling Purify watchpoint functions . 8-3

Stopping at watchpoints in a debugger 8-4

A watchpoint example . 8-4

Saving watchpoints . 8-6

Notes and limitations . 8-6

9 Custom Memory Managers

Types of custom memory managers . 9-1

Modifying fixed-size allocators . 9-3

Using purify_is_running instead of #ifdef 9-4

Modifying pool allocators . 9-5

Modifying sbrk allocators . 9-7

Accessing auxiliary data . 9-8

Auxiliary data example . 9-8

10 Purify Messages Reference

Message quick reference . 10-1

Message severity . 10-2

Message descriptions . 10-3

11 Using Purify Options and API Functions

Using Purify options . 11-2

Purify option syntax . 11-2
vii

Purify option types . 11-3

Purify option processing . 11-4

Using the -ignore-runtime-environment option 11-6

Using Purify API functions . 11-7

Calling Purify API functions from a debugger 11-7

Using the function purify_stop_here . 11-7

Calling Purify API functions from your program 11-8

Linking with the Purify stubs library . 11-8

Linking with the Purify stubs library on IRIX 11-8

12 Purify Options and API Reference

Build-time options quick reference . 12-1

Run-time options quick reference . 12-2

API functions quick reference . 12-4

Build-time options . 12-6

Annotation options . 12-9

Annotation API . 12-9

Exit processing options . 12-10

Exit processing API . 12-11

File descriptor options . 12-12

File descriptor API . 12-12

Mail mode option . 12-13

Memory access options . 12-14

Memory access API . 12-15

Memory leak options . 12-16

Memory leak API . 12-17

Message appearance options . 12-18

Message batching options . 12-19

Message batching API . 12-20

Output mode options . 12-21

Pool allocation API . 12-23

Static checking options . 12-24

Suppression options . 12-26
viii

Threads options . 12-27

Threads API . 12-28

Watchpoint options . 12-29

Watchpoint API . 12-29

Miscellaneous options . 12-31

Miscellaneous API . 12-33

13 Common Questions

Questions about building Purify’d programs 13-1

Questions about running Purify’d programs 13-5

General questions . 13-9

Purify Quick Reference

Index
ix

x

P U R I F Y U S E R ’ S G U I D E
Welcome to Purify
This guide documents the features and capabilities of Purify
release 4.0. It can help you quickly master the basics of using
Purify and move on to using Purify’s more specialized features.

Getting started

Chapter 1, “Introducing Purify” provides an overview of how and
when to use Purify in order to get the most out of it, including how
to use Purify with other Pure Software products.

It also contains a discussion of the importance of finding various
types of memory access errors and memory leaks.

Mastering the basics

Three tutorial chapters help you begin successfully using Purify:

■ Chapter 2, “Finding Errors in Hello World” shows you the
basics of how to use Purify and the messages it generates.

■ Chapter 3, “Memory Access Errors” explains how Purify finds
memory access errors and shows you how to correct them.

■ Chapter 4, “Memory Leaks” describes how Purify reports
memory leaks and shows you how correct them.

Learning to use special features

These chapters help you take advantage of Purify’s special
features:

■ Chapter 5, “Analyzing File Descriptors” describes how Purify
reports the file descriptors that are open when your application
exits.
xi

■ Chapter 6, “Customizing Purify” explains how to customize
Purify’s Viewer messages and scripts, save output to log files and
view files, and enable just-in-time debugging.

■ Chapter 7, “Suppressing Purify Messages” describes how to
prevent Purify messages from being displayed.

■ Chapter 8, “Setting Watchpoints” describes how to use
watchpoints to monitor memory reads, writes, allocations,
and frees.

■ Chapter 9, “Custom Memory Managers” describes Purify’s
support for special-purpose or custom memory allocators.

Using the reference chapters

These reference chapters provide a complete resource for your
ongoing use of Purify.

■ Chapter 10, “Purify Messages Reference” describes each of the
messages generated by Purify.

■ Chapter 11, “Using Purify Options and API Functions” explains
how to specify Purify options and API functions.

■ Chapter 12, “Purify Options and API Reference” provides a
complete reference of all Purify options and API functions.

■ Chapter 13, “Common Questions” contains answers to the most
frequently asked questions about Purify.

Using online Help

Purify provides online Help through the Help menu in the Purify
Viewer. To get online Help, click any item in the Help menu. If you
click On Context in the Help menu, the cursor becomes a question
mark (?). Click on any component of the window for specific
information about that component.
xii Purify User’s Guide

Conventions used in this guide

■ <purifyhome> refers to the directory where Purify is installed.
To find the Purify directory on your system, type:

% purify -printhomedir

■ Courier font indicates source code, program names or output,
file names, and commands that you enter.

■ Angle brackets < > indicate variables.
■ Italics introduce new terms and show emphasis.
■ This icon appears next to instructions for the Sun SPARC

SunOS 4. 1 operating system.
■ This icon appears next to instructions for the Sun SPARC

Solaris 2 operating system, also referred to as SunOS 5.
■ This icon appears next to instructions for the HP-UX operating

system.
■ This icon appears next to instructions for the Silicon Graphics

IRIX operating system.

Displaying the release notes

The Purify README file is located in the <purifyhome> directory.
You can open it from the Purify Viewer by selecting Release Notes
from the Help menu. The README file contains the latest
information about this release of Purify, including hardware and
software supported, and notes about specific operating systems.

Installing Purify

For information about licensing and installing Purify, refer to the
Installation & Licensing Guide, part number 300-00001-02.

Sun
OS4

Solaris

HPUX

IRIX
Welcome to Purify xiii

Contacting technical support

If you have a technical problem and you can’t find the solution in
this guide, contact your nearest Pure Software Technical Support
Center. See the back cover of this guide for addresses and phone
numbers of Pure Software Technical Support Centers.

Note the sequence of events that led to the problem and any
program messages you see. If possible, have the product running
on your computer when you call.

For technical information about Purify, answers to common
questions, and information about other Pure Software products,
visit the Pure Software World Wide Web site at
http://www.pure.com . To contact technical support directly, use
http://www.pure.com/techsupport .
xiv Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
1
 Introducing Purify
In the world of C and C++ software development, no tool exists
that can prevent you from introducing memory-related bugs into
your application. But there is a tool that can help you locate and
resolve these bugs easily and quickly, minimizing their impact on
your budget, schedule, and customers. That tool is Purify.

Purify is the most comprehensive run-time error detection tool
available. It checks all the code in your program, including any
application, system, and third-party libraries. Purify works with
complex software applications, including multi-threaded, and
multi-process applications.

Purify checks every memory access operation, pinpointing where
errors occur and providing detailed diagnostic information to help
you analyze why the errors occur. Among the many errors that
Purify helps you locate and understand are:

■ Reading or writing beyond the bounds of an array
■ Using uninitialized memory
■ Reading or writing freed memory
■ Reading or writing beyond the stack pointer
■ Reading or writing through null pointers
■ Leaking memory and file descriptors

With Purify, you can develop clean code from the start, rather than
spending valuable time debugging problem code later.
1-1

When to use Purify

The key to delivering quality software applications is to use Purify
consistently, right from the start. As soon as your code is ready to
run, you can benefit from using Purify.

Use Purify throughout your development cycle for progressively
cleaner code and a more solid product as your project advances.

Resolve memory-related errors at the best and least
expensive time: when the code is fresh in your mind.

Validate code supplied by third-party vendors or other groups
before you incorporate it into your business-critical code.

Reduce the risk that bugs in your code might impact other
code modules, causing team members to lose valuable time.

Verify that modules work together, and expose code
dependencies and collisions.

Uncover bugs and validate product quality during alpha,
beta, and other milestones.

Acceptance tests

Nightly builds

Project milestones

Code check-in

As you code

Release product

Begin coding
1-2 Purify User’s Guide

Starting to use Purify

Purify is easy to use. You just add purify to your link line. For
example:

% purify cc -g <myprogram>.o

or, if you compile and link at the same time:

% purify cc -g <myprogram>.c

Purify uses Object Code Insertion (OCI) technology to instrument
a copy of your object code, inserting checking instructions before
every memory operation. (On IRIX, Purify instruments the
executable file, then saves the file under a new name.)

When you run the instrumented program, Purify reports run-time
errors and memory leaks in the Purify Viewer.

Purify displays messages in outline format for easy browsing.

Click here to expand
a message or item

Click here to expand one or
more selected messages

Acronyms summarize
the type of error

Total number of memory access errors
Total amount of leaked memory
Introducing Purify 1-3

Purify’s condensed outline format makes it easy for you to scan the
messages, quickly identify critical errors, and assess the state of
your program.

Purify displays exactly the information you need to quickly locate and correct errors.

To make messages easy to scan, Purify displays the first
occurrence of a message, with a count of repeated identical
occurrences (those with the same error type and call chain). For
example, if a single error occurs repeatedly inside a loop, Purify
displays an initial message and then simply updates the repeat
count.

The exact location of
the error in the program

The exact location in
memory where the

error occurs

The call chain
shows the function
calls leading to the

error, and the
line where the

error occurs

The number of times the error occurs
1-4 Purify User’s Guide

Getting the most out of Purify

Whether you spend your time deep within a debugger or with a set
of test scripts, work alone or as part of a team, Purify can work the
way you do.

Customizing Purify

You can customize Purify to suit your own needs. For example,
you can:

■ Direct Purify output to a binary file instead of displaying it in
the Viewer. This is useful when you are running a nightly test
suite.

■ Customize Purify messages to include additional information
that can help you locate errors. For example, you can increase
the number of source code lines that are displayed in messages,
or include instruction addresses and offsets.

■ Suppress Purify messages in order to focus on critical errors. For
example, you might want to suppress all messages related to
third-party libraries for which you don’t have source code, or
hide all messages except those in your own code. Suppressing a
message affects only the display of information. Purify continues
to detect and report all problems, but it doesn’t display the
suppressed messages in the Viewer.

For more information, see Chapter 6, “Customizing Purify” and
Chapter 7, “Suppressing Purify messages.”

Using your debugger with Purify

Purify lets you run your Purify’d program directly under your
debugger. When Purify finds an error, you can investigate it
immediately without rerunning your program separately in your
debugger.

Alternatively, you can enable Purify’s just-in-time (JIT) debugging
feature to have Purify start your debugger only when it
encounters an error—and you can specify which types of errors
Introducing Purify 1-5

trigger the debugger. JIT debugging is useful for errors that
appear only once in a while. When you enable JIT debugging,
Purify suspends execution of your program just before the error
occurs, making it easier to analyze the error.

For more information, see “Using your debugger to set
breakpoints” on page 4-7 and “Enabling JIT debugging” on page
6-11.

Calling Purify’s API functions

You can call Purify’s API functions from your source code or from
your debugger to gain more control over Purify’s error checking.
By calling Purify’s API functions from your debugger, you get
additional control without modifying your source code. You can use
Purify’s API functions to check memory state, and to search for
memory and file descriptor leaks.

For example, by default Purify reports memory leaks only when
you exit your program. However, if you call the API function
purify_new_leaks at key points throughout your program, Purify
reports the memory leaks that have occurred since the last time
the function was called. This periodic checking enables you to
locate and track memory leaks more effectively.

For more information about how to use Purify API functions, see
Chapter 11, “Using Purify Options and API Functions.” For a
complete list of Purify API functions, see Chapter 12.

Integrating Purify into makefiles and scripts

You can easily use Purify with existing makefiles, test harnesses,
or scripts. For example, in a makefile:

hello_world: hello_world.o

cc -g -o hello_world hello_world.o

Just add purify , or another target:

hello_world.pure: hello_world.o

purify cc -g -o hello_world.pure hello_world.o
1-6 Purify User’s Guide

Using Purify with other Pure Software products

You can use Purify with other Pure Software products such as
PureCoverage, PureLink, PureDDTS, and PureTestExpert.

Note: The instruction sequences that Purify inserts during
instrumentation are incompatible with the instruction sequences
inserted by Pure Software’s performance analysis product
Quantify. You cannot use Purify and Quantify at the same time.

Using Purify with PureCoverage

Purify is designed to work closely with PureCoverage, Pure
Software’s run-time test coverage tool. Use Purify with
PureCoverage to improve coverage for your test cases while
verifying that the tests do not have memory access errors or
memory leaks. PureCoverage identifies the parts of your program
that have not yet been tested.

To use Purify with PureCoverage, add both product names to the
front of your link line. Include all options with the program to
which they refer. For example:

% purify <purifyoptions> purecov <purecovoptions> \

cc -g hello_world.c -o hello_world

When you run your program, you see the Purify banner and the
PureCoverage banner. Purify reports memory access errors and
memory leaks as the program runs. You can examine the test
coverage data after the program terminates.

For more information about the order in which Purify applies
options, see “Purify option processing” on page 11-4.

To start PureCoverage from the Purify Viewer, click the
PureCoverage icon in the toolbar.

HPUXSun
OS4 Solaris
Introducing Purify 1-7

Using PureLink with Purify and PureCoverage

You can use Purify and PureCoverage with PureLink, Pure
Software’s incremental linker, to save time building your
programs. Specify purelink first on the link line. Include all
options with the program to which they refer.

To use Purify with PureLink, type:

% purelink <purelinkoptions> \
purify <purifyoptions> cc -g \
hello_world.c -o hello_world

To use Purify with Purelink and PureCoverage, type:

% purelink <purelinkoptions> purify <purifyoptions> \
purecov <purecovoptions> cc -g \
hello_world.c -o hello_world

Using Purify with PureDDTS

If PureDDTS, Pure Software’s defect-tracking tool, is installed at
your site and in your path, you can start it directly from the Purify
Viewer. Click the PureDDTS icon in the toolbar or select Start
PureDDTS from the File menu.

Using Purify with PureTestExpert

You can run Purify’d programs with PureTestExpert, Pure
Software’s test-management tool to automatically get run-time
reports. This is especially useful when running regression tests.

Sun
OS4 Solaris
1-8 Purify User’s Guide

Checking for memory errors

Memory errors, such as array-bounds errors, dangling pointers,
and uninitialized memory reads, are among the most difficult to
detect. The symptoms of incorrect memory use typically occur far
from the cause of the error and are unpredictable, so that a
program that appears to work correctly really works only by
accident.

Memory access errors

When your program writes memory past the bounds of an
allocated block, the memory could belong to another data
structure in the program, which would become corrupted when it
is overwritten. Reading from beyond the memory block might
appear less critical because memory is not corrupted. However,
the behavior of the program comes to depend on the values
accessed, which are unpredictable. If the exact layout of memory is
changed, the memory block adjacent to the block for which the
reference was intended might be totally different and contain
different values.

Purify inserts guard zones around statically and dynamically
allocated memory to catch this type of access error. Purify reports
an Array Bounds Read (ABR) or an Array Bounds Write (ABW)
message at the time it detects the error.

Accessing through dangling pointers

When a dynamically allocated block of memory is freed, the
memory is often reallocated to a new data structure in a different
part of the program. If a program uses a dangling pointer to read
values from a recently-freed memory block, and the freed memory
hasn’t been reallocated yet, the expected value might still be
present. Although the program appears to work, it could fail if the
memory allocation pattern changes and the freed memory block is
reallocated earlier.
Introducing Purify 1-9

In a threaded program, the reallocation can happen in another
thread, in which case the failure becomes dependent upon specific
timing issues. For example, the program might fail only on a
multi-processor machine where the second processor allocates the
memory while the first processor is still accessing it.

Similarly, if a program uses a dangling pointer to write a value to
a recently-freed memory block, the program might continue to
work. However, if the memory is already being used by another
data structure, the write will corrupt that other data structure.
The corruption is apparent only later in the run when it’s difficult
to identify the cause.

Purify tracks freed memory and reports invalid memory accesses
as Free Memory Read (FMR) or Free Memory Write (FMW) errors
at the time the errors occur.

Uninitialized memory reads

In C and C++, local variables are allocated from memory on the
stack at the time the function or block defining the variable is
entered. Initially, the variables contain whatever values the stack
memory last held, and are considered uninitialized. If your
program attempts to use the value of such a variable without first
setting it, the value is undefined. Unfortunately, the value is not
random, but depends on how that memory was last used.
Similarly, memory you get from malloc or new starts out
uninitialized.

Purify tracks new memory blocks as they are allocated and reports
any attempt to read or use a value from the block before it’s
initialized as an Uninitialized Memory Read (UMR) error.

Memory allocation errors

If your program incorrectly uses memory-allocation primitives, it
might continue to run in spite of the error. However, in this case
you risk corrupted heap data structures and failures at a later
point in your program’s run.
1-10 Purify User’s Guide

Purify intercepts all calls to memory allocation API functions such
as malloc , new, new[] , calloc , realloc and related functions, to
warn you about their incorrect use. For example, when you use an
incorrect function to free memory, such as calling free on memory
obtained from new, Purify generates a Freeing Mismatched
Memory (FMM) message.

Memory leaks

Leaked memory is memory that is allocated but never freed, and
for which no pointers are accessible. Although these blocks of
memory can’t be used again or freed, they still occupy address
space. Because leaked memory blocks are typically scattered
throughout the heap, the address space becomes fragmented. The
memory leaks gradually affect the performance of the program,
and can eventually cause the program to fail from lack of memory.

Purify identifies true memory leaks by searching the entire
address space looking for allocated memory to which there are no
pointers. This technique enables Purify to detect a few leaked
blocks out of the many blocks in use. This precision is critical, as a
few bytes leaked can be easily missed amid the megabytes of
allocated data in use. With Purify, even short test cases can be
valuable in finding memory leaks.

Errors in third-party code and libraries

When you run an instrumented program, Purify reports all
problems that it detects in the third-party libraries that your
program uses. Although you can’t edit this code to fix the
problems, there are compelling reasons to review the messages
that Purify reports about the code.

The reliability and quality of your application depend on the
third-party code you include in it. When Purify detects errors or
warnings in third-party code, you can develop a workaround or
use an alternative product from another vendor. You can also
request that your vendor fix the problems (or even Purify its
Introducing Purify 1-11

product!), to help ensure that the components you build into your
application meet your high standards.

It’s possible that your own code is causing error reports to appear
in the third-party code. Unless you check the third-party code, you
can’t uncover the errors in your code. For example, if your code
allocates an undersized buffer and then passes the buffer into a
third-party routine to receive an argument, the buffer overwrite
occurs within the third-party code. Purify detects these errors.
1-12 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
2
 Finding Errors in Hello World
This chapter uses the Hello World program provided with Purify
to show you how to:

■ Build and run a Purify’d program
■ Analyze messages
■ Correct an Array Bounds Read (ABR) error
■ Understand the memory leaked summary
■ Rerun a Purify’d program

The examples in this chapter are built and run on a SunOS 4.1
system. You might see some differences on Solaris 2, HP-UX, and
IRIX systems.

Note: In order to open the Viewer, Purify must be able to connect
to an X Window display. Set your DISPLAY environment variable
before running Purify. If you are not running on an X display, or if
Purify is unable to make a connection to the display, Purify
generates text output.
2-1

Before you start

Before you start, you need to copy the Hello World program from
the Purify installation directory to a new directory:

1 Create a new working directory, then go to that directory:

% mkdir /usr/home/chris/pwork

% cd /usr/home/chris/pwork

2 Copy the hello_world.c program from <purifyhome>/example

to the new working directory:

% cp <purifyhome>/example/hello* .

3 Examine the code in hello_world.c .

The version of hello_world.c provided with Purify is slightly
different from the traditional version. At first glance there are no
obvious errors, yet the program contains errors that you can
quickly identify with Purify:

1 /*

2 * Copyright (c) 1992-1995 Pure Software.

...

9 * This is a test program used in Purifying Hello World.

10 */

11

12 #include <stdio.h>

13 #include <malloc.h>

14

15 static char *helloWorld = "Hello, World";

16

17 main()

18 {

19 char *mystr = malloc(strlen(helloWorld));

20

21 strncpy(mystr, helloWorld, 12);

22 printf("%s\n", mystr);

23 }
2-2 Purify User’s Guide

Building a Purify’d program

1 Compile and link the Hello World program using the debugging
option -g :

% cc -g hello_world.c

Note: If you compile your code without the -g option, Purify
reports only function names and object file names. It does not
report line numbers, source filenames, or local variable names.

2 Run the program and verify that it produces the expected output:

% a.out

Hello, World

%

3 Add purify in front of the compile/link command line:

% purify cc -g hello_world.c

On IRIX, you can add purify in front of the compile/link command
line, or Purify the executable:

% purify a.out

Note: On IRIX, Purify caches Dynamic Shared Objects (DSOs),
not object files. Ignore all references to linkers and link-line
options in this manual. These do not apply to Purify on IRIX.

Compiling and linking in separate stages

If you compile and link your program in separate stages, specify
purify only on the link line. For example:

On the compile line, use:

% cc -c -g hello_world.c

On the link line, use:

% purify cc -g hello_world.o

output

IRIX

IRIX
Finding Errors in Hello World 2-3

Running a Purify’d program

Run the instrumented Hello World program:

% a.out

On IRIX, if you use purify on the executable instead of on the
compile/link line, type:

% a.out.pure

This prints “Hello, World” in the current window and opens the
Purify Viewer. Notice that the Hello World program starts, runs,
and exits. The error does not cause the program to stop.

Note: The Viewer displays messages for a single executable only.
It is specific to the name of the executable, the directory
containing the executable, and the user id.

HPUXSun
OS4 Solaris

IRIX

Menu bar

Toolbar

Message display

Purify displays the number of access errors
and leaked bytes detected
2-4 Purify User’s Guide

Using the Purify Viewer

The Viewer displays the results of the run of the Purify’d Hello
World program. You can expand the outline to see additional
details.

Note: For a list of keyboard accelerators, see the Purify Quick
Reference at the end of this guide.

The startup banner
shows the name of

the program

Click here to expand a message
one item at a time, or all items at once

Click here
to expand a

message or item

The configuration
message shows the
execution process id
(pid) and the Purify

options used

You can use the
program controls to

run a debugging cycle.
To display, select

Program Controls from
the View menu
Finding Errors in Hello World 2-5

Analyzing an ABR message

Purify reports an Array Bounds Read (ABR) error in the Hello
World program. This is a memory access error.

Expand the ABR message to show the details of this error.

Click to expand the
ABR message

 The function call chain
indicates an error

occurring in _doprnt
called by printf , in
turn called by main

(in hello_world.c)

The exact location
of the error is on line 22

The allocation call chain
shows that the memory
block is allocated in the

function main
on line 19

The details of the
access error
2-6 Purify User’s Guide

Using line numbers and source filenames

To make debugging easier, Purify indicates line number
information when you build a Purify’d program using the -g

compiler option. Purify also identifies program variables by name
whenever possible.

Purify displays the button at the beginning of the function
name lines when a source file and line number are available. If
line number information is not available, Purify reports only
function and filename information as shown with _doprnt and
printf .

Note: On IRIX, system libraries retain their source file and line
number information. Therefore, the button might appear next
to a system library function whose source file is not available.
When you click the button for such a line, Purify asks you for
the location of the source file. Enter the location of the file if you
know it, then click OK to expand the line.

▼

IRIX

▼

▼

Finding Errors in Hello World 2-7

Finding the exact location of the error

To find the exact location of the ABR error, look at the code in
hello_world.c again:

1 /*

2 * Copyright (c) 1992-1995 Pure Software.

...

9 * This is a test program used in Purifying Hello World.

10 */

11

12 #include <stdio.h>

13 #include <malloc.h>

14

15 static char *helloWorld = "Hello, World";

16

17 main()

18 {

19 char *mystr = malloc(strlen(helloWorld));

20

21 strncpy(mystr, helloWorld, 12);

22 printf("%s\n", mystr);

23 }

On line 22, the program requests printf to display mystr , which is
initialized by strncpy on line 21 for the 12 characters in “Hello,
World.” However, _doprnt is accessing one byte more than it
should. It is looking for a NULL byte to terminate the string. The
extra byte for the string’s NULL terminating character has not been
allocated and initialized.

Start of the memory block
(0x44230)

Allocated block size (12)

Accessing 1 byte past
the end of the block

causes an ABR error

H e l l o , W o r l d

Location accessed
(0x4423c)
2-8 Purify User’s Guide

Correcting the ABR error

To correct this ABR error:

1 Click the Edit button to open an editor.

For information about how to change the editor used by the
Viewer, see “Customizing Purify scripts” on page 6-16.

Note: By default, Purify displays 7 lines of the source code file in
the Viewer. You can change the number of lines of source code
displayed by setting an X resource. See “Customizing the Purify
Viewer” on page 6-15.

Or click here to edit
the source code

Click here to edit the source code
Finding Errors in Hello World 2-9

2 Change lines 19 and 21 as follows:

19 char *mystr = malloc(strlen(helloWorld) +1);
20
21 strncpy(mystr, helloWorld, 13);

For more information about how to correct memory access errors,
see Chapter 3, “Memory Access Errors.”

Looking at the file descriptors message

Expand the file descriptors message.

Purify prints the number of file descriptors that are open and
information about their origins.

For more information about file descriptors in use, see Chapter 5,
“Analyzing File Descriptors.”

Purify reserves file
descriptors 26 and
27 for its own use

Expand the file
descriptors message
2-10 Purify User’s Guide

Understanding the memory leaked summary

When the Hello World program exits, Purify searches for memory
leaks and reports all memory blocks that have been allocated but
for which no pointers exist.

Note: When you run longer-running Purify’d programs, you can
click the New Leaks button to generate a new leaks summary
while the program is running. See “Using the new leaks button”
on page 4-10.

1 Expand the memory leaked summary.

The memory leaked summary shows the number of leaked bytes
as a percentage of the total heap size. If there is more than one
memory leak, Purify sorts them by the number of leaked bytes,
displaying the largest leaks first.

2 Expand the MLK message.

The memory leaked
summary reports

one Memory Leak
(MLK) error

Memory analysis by
category

The call chain shows
how the leaked

memory was allocated

When you run your programs, click the New Leaks button to
generate a new leaks summary while the program is running
Finding Errors in Hello World 2-11

Looking at the MLK error

It is not immediately obvious why this memory leaked. If you look
closer, however, you can see that this program does not have an
exit statement at the end. Because of this omission, the function
main returns rather than calls exit , thereby making mystr —the
only reference to the allocated memory—go out of scope.

If main called exit at the end, mystr would remain in scope at
termination, retaining a valid pointer to the start of the allocated
memory block. Purify would then have reported it as memory in
use rather than memory leaked. Alternatively, main could free

mystr before returning, deallocating the memory so it is no longer
in use or leaked.

To correct this MLK error:

1 Click the Edit button to open an editor.

2 Add a call to exit(0) at the end of the program.

Line 19 of
hello_world.c
in main allocates

12 bytes of
leaked memory.
The start of this

memory block is
0x44230 , the same
block with the array

bounds read error
in _doprnt
2-12 Purify User’s Guide

Looking at the heap analysis

Purify distinguishes between three memory states, reporting both
the number of blocks in each state and the sum of their sizes:

■ Leaked memory
■ Potentially leaked memory
■ Memory in use

Notice that this heap analysis includes information for suppressed
as well as unsuppressed blocks. For information about
suppressing messages, see Chapter 7, “Suppressing Purify
Messages.”

For information about how to find and correct memory leaks, see
Chapter 4, “Memory Leaks.”

 A true memory leak
(MLK) is memory to
which your program

has no pointer

A potential memory
leak (PLK) is memory

that does not have a
pointer to its beginning,

but does have one
to its interior

Memory in use
(MIU) is memory to
which your program

has pointers
(these are not leaks)
Finding Errors in Hello World 2-13

Looking at the exit status summary

When the Hello World program terminates, Purify generates a
summary message showing the exit status.

Expand the exit status message.

The exit status message provides information about:

■ Basic memory usage containing statistics not easily available
from a single shell command. It includes program code and data
size, as well as maximum heap and stack memory usage in
bytes.

■ Shared library memory usage indicating which libraries were
dynamically linked and their sizes.

For more information, see “Exit processing options” on page 12-10.

The exit status message
shows information about

memory usage in
program code and

shared libraries
2-14 Purify User’s Guide

Rerunning a Purify’d program

To verify that you have corrected the ABR and MLK errors:

1 Recompile the program with purify , and run it again.

Purify directs the new run to the same Viewer:

The Viewer displays messages for a single executable only. If you
rename the Hello World program and run it again, Purify displays
the run in a new Viewer.

2 Compare the new run to the previous run and see that Purify no
longer reports the ABR or MLK errors.

Congratulations! You have successfully Purify’d the Hello
World program.

Note: You can save the output from a run of a Purify’d program
for later viewing. See “Saving Purify output to a view file” on page
6-3. For more extensive tutorials on correcting memory access
errors and memory leaks, see Chapters 3 and 4.

Purify reports no errors
and no memory leaks
Finding Errors in Hello World 2-15

2-16 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
3
 Memory Access Errors
This chapter begins with a description of how Purify finds memory
access errors; then uses the testHash program provided with
Purify to show you how to find and correct four types of memory
access errors:

■ Reading uninitialized memory
■ Reading and writing beyond the bounds of an array
■ Reading and writing freed memory
■ Freeing unallocated or non-heap memory

To begin the testHash tutorial, go to “Building the testHash
example program” on page 3-6.

For a complete list of memory access options and API functions,
see “Memory access options” on page 12-14 and “Memory access
API” on page 12-15. For a list of memory access error messages,
see Chapter 10.
3-1

How Purify finds memory access errors

Purify monitors every memory operation in your program,
determining whether it is legal. It keeps track of memory that is
not allocated to your program, memory that is allocated but
uninitialized, memory that is both allocated and initialized, and
memory that has been freed after use but still initialized.

Purify maintains a table to track the status of each byte of
memory used by your program. The table contains two bits that
represent each byte of memory. The first bit records whether the
corresponding byte has been allocated. The second bit records
whether the memory has been initialized. Purify uses these two
bits to describe four states of memory: red, yellow, green, and blue.

Purify labels memory states by color.

Blue

Yellow

Illegal to read, write, or free
red and blue memory

malloc

free

write

free

Legal to read and write
(or free if allocated

by malloc)

Legal to write
or free, but

illegal to read
Green

unallocated and
uninitialized freed but still

initialized

Red

 allocated but
uninitialized

 allocated and
initialized

memory memory

memory
memory
3-2 Purify User’s Guide

Purify checks each memory operation against the color state of the
memory block to determine whether the operation is valid. If the
program accesses memory illegally, Purify reports an error.

■ Red: Purify labels heap memory and stack memory red initially.
This memory is unallocated and uninitialized. Either it has
never been allocated, or it has been allocated and subsequently
freed.

In addition, Purify inserts guard zones around each allocated
block and each statically-allocated data item, in order to detect
array bounds errors. Purify colors these guard zones red, and
refers to them as “red zones.” It is illegal to read, write, or free
red memory because it is not owned by the program.

■ Yellow: Memory returned by malloc or new is yellow. This
memory has been allocated so the program owns it, but it is
uninitialized. You can write yellow memory, or free it if it is
allocated by malloc , but it is illegal to read it because it is
uninitialized. Purify sets stack frames to yellow upon function
entry.

■ Green: When you write to yellow memory, Purify labels it green.
This means that the memory is allocated and initialized. It is
legal to read or write green memory, or free it if it was allocated
by malloc or new. Purify initializes the data and bss sections of
memory to green.

■ Blue: When you free memory after it is initialized and used,
Purify labels it blue. This means that the memory is initialized,
but is no longer valid for access. It is illegal to read, write or free
blue memory.

Since Purify keeps track of memory at the byte level, it catches all
memory access errors. For example, it reports an Uninitialized
Memory Read (UMR) if an int or long (4 bytes) is read from a location
previously initialized by storing a short (2 bytes).
Memory Access Errors 3-3

How Purify checks statically allocated memory

In addition to detecting access errors in dynamic memory, Purify
detects references beyond the boundaries of data in global
variables and static variables, that is, data allocated statically at
link-time as opposed to dynamically at run time.

Here is an example of data that is handled by the static checking
feature:

int array[10];

main() {

array[11] = 1;

}

In this example, Purify reports an ABW error at the assignment to
array[11] because it is 4 bytes beyond the end of the array.

Purify inserts red guard zones around each variable in your
program’s static-data area. If the program attempts to read from
or write to one of these guard zones, Purify reports an array
bounds error (ABR or ABW).

Purify inserts guard zones into the data section only if all data
references are to known data variables. If Purify finds a data
reference that is relative to the start of the data section as opposed
to a known data variable, Purify is unable to determine which
variable the reference involves. In this case, Purify inserts guard
zones at the beginning and end of the data section only, not
between data variables.

Purify provides several command line options and directives to aid
in maximizing the benefits of static checking. See “Static checking
options” on page 12-24.
3-4 Purify User’s Guide

Notes and limitations

■ Purify does not detect array bounds errors between individual
local (stack) variables. On SunOS and Solaris, Purify inserts
guard zones between stack frames, causing Stack Array Bounds
Read (SBR) and Stack Array Bounds Write (SBW) errors on
accesses that extend beyond all the local variables in a function.
Purify detects accesses beyond the end of the stack (BSR and
BSW errors) on all platforms, as well as Uninitialized Memory
Reads (UMR) on all stack variables.

■ Due to the flexibility of manipulating pointers in C and C++
programs, a pointer can accidently access a legally-allocated
block of memory that is in fact beyond the block that you are
attempting to access. In this case, Purify does not signal illegal
memory access errors because the memory is properly allocated
and initialized. Purify monitors memory accesses and the blocks
of memory accessed, not pointer arithmetic. You can use the
-chain-length option to adjust the size of red zones to find these
types of errors. See page 12-18.

■ Purify detects array bounds errors in arrays within C structures
only when the access extends beyond the entire structure.
Memory Access Errors 3-5

Building the testHash example program

Before you start, you need to build the testHash program. The
testHash program is located in the <purifyhome>/example

directory. The original uncorrected source code is in the hash.c

file. The corrected source code is in hash.c_afterpure .

To correct the errors in hash.c as you work through this chapter,
you must build all the programs included in the example directory.

Copy the example directory to your home directory, then run make.

% cp -r <purifyhome>/example ~/example

% cd ~/example

% make

cc -c -g testHash.c

cc -c -g hash.c

cc -o testHash testHash.o hash.o

purify cc -o testHash.pure testHash.o hash.o

Purify 4.0 SunOS 4.1, Copyright 1992-1996 Pure Software Inc.

Instrumenting: testHash.o hash.o Linking

%

Note: The examples in this chapter show the testHash program
built on a SunOS 4.1 system. You might see different output and
debugging information on Solaris 2, HP-UX, or IRIX. The memory
address information in the examples is compiler and system
dependent. Also, the source code line numbers you see as you work
through this tutorial might be different from the numbers shown
in this chapter.
3-6 Purify User’s Guide

Running the testHash program without Purify

The testHash program implements a hash table and includes
“rigorous” testing routines.

Run the testHash program:

% testHash

Testing makeHashTable.

Testing putHash - adding from 0 to 100.

Testing getHash - getting from 0 to 100.

Testing remHash - removing from 0 to 50.

Testing remHash - removing from 0 to 50.

Testing getHash - getting from 0 to 50.

Testing getHash - getting from 50 to 100.

Testing putHash - adding from 0 to 50.

Testing putHash - adding from 50 to 100.

Testing delHashTable.

%

The testHash program shows hash.c as passing this test suite.
However, Purify will show that it contains a number of major
errors. If these routines are included in a larger program, the
errors can appear as crashes in seemingly unrelated code.
Memory Access Errors 3-7

Running the Purify’d testHash program

Run the instrumented version of testHash :

% testHash.pure

You can see that Purify detects many memory access errors.

Memory access errors

Purify found these
memory access

errors
3-8 Purify User’s Guide

Debugging the testHash program

The easiest way to track down multiple errors in a program is to
run the instrumented program under a debugger and set a
breakpoint on the purify_stop_here function. Each time Purify
detects a new error, it generates a message and hits the
breakpoint in the debugger. This helps identify the error at its
origin.

Alternatively, Purify can automatically attach a debugger to your
program when it detects an error. See “Enabling JIT debugging”
on page 6-11 for details.

Note: Unless otherwise noted, the debugging examples in this
section use the dbx debugger. The banner information that appears
in several of the messages is left out of these examples.

Debugging with dbx

You might notice minor differences between these examples and
the implementation of dbx on IRIX.

% dbx testHash.pure

Reading symbolic information...

Read 2588 symbols

(dbx) stop in purify_stop_here

(2) stop in purify_stop_here

(dbx) run

Running: testHash.pure

Testing makeHashTable.

Testing putHash - adding from 0 to 100.

stopped in purify_stop_here at 0x2dd4

purify_stop_here:nop

Current function is putHash

 135 entry && strcmp (entry->key, key);

(dbx)

IRIX
Memory Access Errors 3-9

Debugging with xdb

On HP-UX, use the wrapper script for xdb , located in
<producthome>/purify_xdb . This configures the debugger for
Purify’d programs. (Purify provides similar scripts for dde and
softdebug .) You should also add the line:

z 18 sir

to your ~/.xdbrc file. See the README file for more details.

% purify_xdb testHash.pure

200: * value should be there or not.

201: */

202: int main()

203: {

204: hashtable* ht;

205: char* testTable[TABLE_SIZE];

206:

 > 207: fillTestTable(testTable);

208:

209: ht = testMakeHashTable();

210: testPutHash(ht, testTable, 0, 100, FALSE);

211: testGetHash(ht, testTable, 0, 100, TRUE);

212: testRemHash(ht, testTable, 0, 50, TRUE);

213: testRemHash(ht, testTable, 0, 50, FALSE);

214: testGetHash(ht, testTable, 0, 50, FALSE);

 File: testHash.c Procedure: main Line: 207

Copyright Hewlett-Packard Co. 1985,1987-1992. All Rights

Reserved.

<<<< XDB Version A.09.01 HP-UX >>>>

No core file

Procedures: 15

Files: 3

>Sig Stop Ignore Report Name

 18 No Yes No death of child

>b purify_stop_here

Overall breakpoints state: ACTIVE

Added:

 1: count: 1 Active purify_stop_here: 1:

>r

Starting process 24385: "testHash.pure"

HPUX
3-10 Purify User’s Guide

Wait...loading shared-library map tables. Done.

Testing makeHashTable.

Testing putHash - adding from 0 to 100.

breakpoint at 0x00029a88

purify_stop_here.c: purify_stop_here: 1:

>d

Reading uninitialized memory

When a program attempts to perform an operation using values
from uninitialized memory, the results can be unpredictable. The
code often appears to work correctly until an unrelated part of the
program changes, causing it to malfunction in mysterious ways.
Purify calls this type of error an Uninitialized Memory Read
(UMR).

A UMR example

Expand the UMR line, then expand the putHash line.

4 bytes of uninitialized
memory are used on
line 135 of putHash

entry is initialized to
the value of ht[index] ,

so it appears that
entry is initialized

The uninitialized data
is read from the local

variable entry on
the stack
Memory Access Errors 3-11

Purify distinguishes between copying uninitialized data and using
it in an operation. In this example, the program tests whether
entry is non-NULL on line 135. Purify checks this access, and finds
that entry contains uninitialized data. Purify reports a UMR
error. The error is that ht[index] is not initialized before the copy
to entry .

Notice, however, that Purify does not signal an error on line 134
when ht[index] is copied into entry . This is because it is common
for correct code to copy uninitialized data, particularly when
copying structures containing padding bytes used to align fields of
differing sizes. For this reason, Purify does not report
Uninitialized Memory Copy (UMC) errors by default.

In this example, the code appears to work correctly when it is
tested because the value of ht[index] is expected to be initialized
to NULL. Since the memory in ht[index] has not been used, it
happens to be NULL even without being initialized. The code is not
correct, but appears to run correctly in the test cases. However, if
new code is added later the program can produce incorrect results.

Here is another example:

int i;

int j;

j=i;

printf(”%d”,j);

In this example, i and j are not initialized. The value of i is copied
to j so Purify marks j as uninitialized also. When the value of j is
used as an argument to printf , Purify reports a UMR error. Purify
actually detected a UMC error at j=i , however, by default Purify
suppresses UMC error messages.

Note: You can temporarily unsuppress the UMC messages in the
testHash example by selecting Suppressed Messages in the View
menu. For more information about how to suppress and
unsuppress messages, see Chapter 7, “Suppressing Purify
Messages.”
3-12 Purify User’s Guide

Finding the cause of the UMR error

To correct this error, you must determine where ht[index] should
have been initialized. By looking at Purify’s initial error message,
you can see that putHash is called by testPutHash , which is called
by main .

1 Click the Edit button in the message to display the source file.

2 Notice that ht is initially allocated in the function makeHashTable

in hash.c .

hashtable* makeHashTable()

{

 hashtable* ht;

 ht = (hashtable*)malloc(HASHTABLE_SIZE*sizeof(hashEntry*));

 return(ht);

}

The memory that ht points to is never initialized.

Correcting the UMR error

To correct this UMR error:

1 Add the initialization code:

hashtable* makeHashTable()

{

hashtable* ht;

ht = (hashtable*)malloc(HASHTABLE_SIZE*sizeof(hashEntry*));

/* fix umr by initializing all hash pointers to null */

memset(ht, 0, HASHTABLE_SIZE*sizeof(hashEntry*));

return(ht);

}

2 Recompile the program and run it again.

Purify should no longer signal an uninitialized memory read error
on line 135 of hash.c . You have successfully corrected a UMR error.

Add this code
Memory Access Errors 3-13

Reading and writing beyond the bounds of an array

Reading before the beginning or after the end of an array uses
data that is not intended to be used. If another part of the program
writes to this memory, unexpected and incorrect values can be
read and used. Similarly, writing beyond the bounds of an array
can corrupt data used by other parts of a program.

Purify calls these types of errors Array Bounds Read (ABR) and
Array Bounds Write (ABW) errors. Purify reports ABR and ABW
errors when they occur, clearly indicating the origin of data
corruption.

An ABW example

1 Expand the first ABW line, then expand the putHash line.

2 Use your debugger to verify that new_key is the overwritten array:

(dbx) print new_key

‘new_key = 0x489a0 ““

On line 146, strcpy
is writing 2 bytes

into a 1-byte array.
The destination of the

copy is new_key

The array is in the
heap at memory

location 0x489a0
3-14 Purify User’s Guide

Finding the cause of the ABW error

To find the cause of the error, you must determine why the
program is writing beyond the end of new_key .

1 Click the Edit button in the message to display the source file.

2 Look at line 146 in putHash to see why it is trying to copy into a
string that is not long enough. The string new_key is allocated on
line 145, just prior to the strcpy .

The code attempts to create an array large enough to hold the
string in key by getting its length from strlen . The problem is that
strlen returns only the number of characters in the string key and
does not include the NULL character terminating the string. When
the NULL character is copied into new_key by strcpy , the program
writes beyond the end of the array.

This error can cause intermittent failures. The malloc function call
returns memory blocks with sizes rounded up to a multiple of
8 bytes. Most often, the NULL byte is written into padding or
alignment space with no adverse effect. Occasionally, however, the
write corrupts the adjacent memory. If that memory is used, the
error can result in serious consequences and noticeable symptoms.
Purify detects the error in every case.
Memory Access Errors 3-15

Correcting the ABW error

To correct this ABW error:

1 Add 1 to the value returned by strlen on line 145.

...

}

else {

old_value = NULL;

entry = (hashEntry*)malloc(sizeof(hashEntry));

new_key = malloc((strlen(key) +1) *sizeof(char)); /* fix abw */

strcpy(new_key, key);

entry->key = new_key;

entry->value = value;

entry->next = NULL;

if (last_entry) {

last_entry->next = entry;

}

else {

ht[index] = entry;

}

}

...

2 Recompile the program and run it again.

Purify no longer signals the ABW error. You have successfully
corrected an ABW error.

An ABR example

If your program makes an improper cast it can cause an array
bounds error. Consider this code fragment:

void badCast(key)

 void* key;

{

hashEntry* entry = (hashEntry*)key;

if (entry->value) {

...

Add +1 to this line
3-16 Purify User’s Guide

If key is a pointer to a single malloc ’d byte, the offset to value will
go beyond the end of key . This causes an ABR error when the code
refers to entry->value . The code is accessing memory illegally even
if it does not appear to be running off the end of an array.

Reading or writing freed memory

When a program frees a segment of memory, but continues to read
from and write to that segment, the data in that segment is no
longer protected. Another part of the program might allocate and
start using this freed segment, change the data, and cause the
program to crash mysteriously. Purify calls these types of errors
Free Memory Read (FMR) or Free Memory Write (FMW).

It is not unusual to separate the use and freeing of memory. For
this reason, Purify tells you not only where you read from freed
memory, but also where you freed the block and where it was
originally allocated. These operations are usually widely
separated when two different modules pass data back and forth,
and one module frees the other module’s memory.

Failures due to FMR errors can be more intermittent than ABW
errors. For example, if you add timer signals to your program—
perhaps to update a program busy cursor—one out of 100,000
timer interrupts might occur between the free and the use of
entry . If the handler code uses heap memory, it can reuse entry ,
corrupting it and causing intermittent behavior or a crash.

To facilitate finding FMR and FMW errors, Purify does not return
freed memory for re-use as soon as it is freed. Instead, Purify puts
the memory on a first-in, first-out free queue, returning it to the
system only when the free-queue is full or when the system is out
of memory. You can change the length of the free queue by using
the -free-queue-length option. See “Memory access options” on
page 12-14.
Memory Access Errors 3-17

An FMR example

1 Expand the FMR line, then expand the remHash line.

The FMR message indicates that the program is reading from
freed memory in remHash .

The program is reading 4 bytes starting at 0x48948 , 8 bytes into
the freed block.

2 Use your debugger to verify that this is the freed memory:

(dbx) print &entry->next

& entry->next = 0x48948

(dbx) print entry

entry = 0x48940

The block of freed memory read is entry->next , and entry is the
block of memory that was freed; entry is a pointer to a hashEntry .

Note: You can also identify the free ’d block by looking at the
allocation call chain. The message indicates that the block was
allocated in putHash , line 144. The freed data is a hashEntry .

On line 187, the
program is reading

freed memory

The freed memory
starts at 0x48940

and is 12 bytes long
3-18 Purify User’s Guide

Finding the cause of the FMR error

To find the cause of the error, you must find out why memory is
being read after it has been freed.

1 Click the Edit button in the message to display the source file.

2 Look at the function remHash . Notice that the order of freeing the
block and updating the pointers of the linked list is confused.

void* remHash(ht, key)

 hashtable* ht;

 char* key;

{

 hashEntry* last_entry;

 hashEntry* entry;

 void* value;

 int index = hashIndex(key);

 for (last_entry = NULL, entry = ht[index];

 entry && strcmp(entry->key, key);

 last_entry = entry, entry = entry->next) {

 }

 if (entry) {

value = entry->value;

free(entry->key);

free(entry);

if (last_entry) {

 last_entry->next = entry->next;

}

else {

ht[index] = entry->next;

}

 }

 else {

 value = NULL;

 }

 return(value);

}

Look here

And here
Memory Access Errors 3-19

Correcting the FMR error

To correct this FMR error:

1 Move both of the frees so they occur after the pointer updates.

if (entry) {

value = entry->value;

if (last_entry) {

last_entry->next = entry->next;

}

else {

ht[index] = entry->next;

}

free(entry->key); /* moved free to fix fmr */

free(entry); /* moved free to fix fmr */

 }

 .

 .

 .

2 Recompile the program and run it again.

Purify no longer signals an FMR error. You have successfully
corrected this FMR error.

 move frees
to here
3-20 Purify User’s Guide

Freeing unallocated or non-heap memory

Confusion about memory ownership can lead to freeing the same
memory several times, or freeing a block of memory that was
never allocated. Purify calls these errors Freeing Non-Heap (FNH)
or Freeing Unallocated Memory (FUM).

An FNH example

1 Expand the FNH line, then expand the delHashTable line.

2 Use your debugger to confirm that last_entry->value is the same
address that Purify reports as freed.

(dbx) print last_entry->value

last_entry->value = 0xeffff764

On line 60 in
delHashTable , the
program attempts to

free a pointer that
points to stack

memory, not
malloc ’d memory

(0xeffff764)
Memory Access Errors 3-21

Finding the cause of the FNH error

To find the cause of the error, you need to determine why the
program is trying to free the block on the stack.

1 Click the Edit button in the message to display the source file.

Notice that the values inserted into the hash table are pointers to
the stack.

2 Look at line 60 in delHashTable :

void delHashTable(ht)

 hashtable* ht;

{

 int index;

 hashEntry* last_entry;

 hashEntry* entry;

 for (index = 0; index < HASHTABLE_SIZE; index++) {

 for (last_entry = NULL, entry = ht[index];

 entry;

 last_entry = entry, entry = entry->next) {

 if (last_entry) {

free(last_entry->key);

free(last_entry->value);

 free(last_entry);

As the program goes through the hash table and frees each block,
it attempts to free the value that was put into the hash table. This
block of memory does not belong to the hash table; it belongs to
the routine that uses the hash table to store this value.

It is not uncommon for ownership of memory to become confused
between modules, resulting in one module attempting to free the
memory of another module.

This block of
memory does not

belong to the
hash table
3-22 Purify User’s Guide

Correcting the FNH error

To correct this FNH error:

1 Remove the incorrect call to free .

void delHashTable(ht)

 hashtable* ht;

{

 int index;

 hashEntry* last_entry;

 hashEntry* entry;

 for (index = 0; index < HASHTABLE_SIZE; index++) {

for (last_entry = NULL, entry = ht[index];

 entry;

 last_entry = entry, entry = entry->next) {

 if (last_entry) {

free(last_entry->key);

/* free(last_entry->value); removed to fix fnh */

free(last_entry);

2 Recompile the program and run it again.

Purify should not signal an FNH error at line 60 in delHashTable .
You have successfully corrected this FNH error.

Remove this free
Memory Access Errors 3-23

3-24 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
4
 Memory Leaks
This chapter begins with a description of how Purify reports
memory leaks; then continues using the testHash program
provided with Purify to show you how to find and correct a
memory leak. The testHash tutorial begins on page 4-4.

For a complete list of memory leak options and API functions, see
“Memory leak options” on page 12-16 and “Memory leak API” on
page 12-17.

How Purify reports memory leaks

Purify generates a Memory Leaked summary (MLK) when the
program exits, that is, when the program goes through an exit() .
A Purify memory leaked summary indicates the amount of
memory leaked by the program during execution and identifies
the origin of each leak by the functions that allocated the memory.
If the program terminates because of a signal, Purify does not
generate a report.

Purify finds memory leaks by searching for blocks that have no
pointers to them. Since these blocks cannot be accessed, they are
lost to the program and cannot be freed. Consider this example of
a linked list:

At first, memory blocks A, B, C, and D all have references to them.
A is referenced through the global variable pList , and B, C, and D
through the pNext pointers.

NULL

D

pNextpList

A

•
pNext

B

pNext

C

• • •
4-1

Then, block C is removed from the list by setting the pNext pointer
in B to point to D instead of C.

However, list block C is not freed. Unless there is another pointer
to C, there is now no possible way to free C. It is a leaked memory
block.

In the memory leaked message for this linked list, Purify shows
1 leaked block (C), 3 memory-in-use blocks (A, B, and D), and 4
allocated blocks (A, B, C, and D).

NULL

D

pNextpList

A

•
pNext

B

pNext

C

•• •

C leaked

A, B, D, in use

A, B, C, D, allocated
4-2 Purify User’s Guide

Traditional leak detectors (like mprof) report the memory blocks
that are not freed before the program exits by simply matching
memory allocations and corresponding frees. This is misleading,
since most of these memory blocks are not leaks. They are either
permanently allocated memory, such as symbol tables, or memory
that happens to be in use when the exit function is called. In this
linked list example, a typical malloc-debug leak detector would
report all four blocks (A, B, C, and D) as leaked. When no
distinction is made between true memory leaks and memory in
use, it is difficult to identify the real problem.

Purify also reports memory blocks that do not have pointers to
their beginnings, but that do have a pointer to their interior. These
blocks are probably leaks, because there is no pointer that can be
used directly to free them. Sometimes, however, these blocks are
still in use. Purify calls these Potential Leaks (PLK) to distinguish
them from true Memory Leaks (MLK).

Notes and limitations

Purify finds leaks of memory allocated using malloc and related
functions. It cannot find memory leaks in programs that do not use
malloc . Since the C++ new operation calls malloc , Purify finds
memory leaks in C++ code.

By default, Purify cannot find all leaks in memory blocks handled
by custom memory management routines that you create on top of
malloc , new, and delete . For example, if you allocate a large block
of memory and break it up into smaller blocks, you can manage
the allocation and freeing of that memory on your own. Purify does
not find leaks of those subdivided blocks.

See Chapter 9, “Custom Memory Managers,” for details on how to
control Purify’s operation while using custom memory managers.
Memory Leaks 4-3

Finding the memory leaks in testHash

See “Building the testHash example program” on page 3-6 to build
the testHash program. If you corrected the memory access errors
in Chapter 3, you might want to start this tutorial with a fresh
copy of the testHash program so that the line numbers you see will
match the ones shown in this chapter.

Note: The examples in this chapter show the testHash program
built on a SunOS 4.1 system. You might see different output and
debugging information on Solaris 2, HP-UX, or IRIX. The memory
address information in all examples is compiler and system
dependent.

1 Run the Purify’d version of testHash .

% testHash.pure

When testHash exits, Purify reports 182
bytes of leaked memory

The memory leaked
summary indicates

that a total of 182
bytes of memory

are leaked
4-4 Purify User’s Guide

2 Expand the memory leaked summary, then expand the MLK error
messages.

Purify reports two MLK errors: a 12-byte leak and a 2-byte leak,
each occurring multiple times. This results in a total of 182 bytes
of leaked memory.

3 Expand the putHash function. Notice that each leaked block is a
hashEntry or its associated key .

A 2-byte leak occurs
13 times resulting in

26 leaked bytes

The last leaked block begins at address 0x4f400

The leaked memory is
allocated in putHash

line 145

The last leaked
memory begins at
address 0x4f460
Memory Leaks 4-5

Finding the source of memory leaks

To track down a memory leak, you need to know how the memory
blocks are used and where they are stored, and you need to
understand where they are lost.

Run the program again and look for a section of code that loses the
last pointer to a block of memory. The last pointer to a block of
memory can be lost if:

■ The pointer is reassigned to a new value
■ The pointer goes out of scope
■ A memory block containing the pointer is freed or becomes a

leak itself

To understand this memory leak message, you need to review how
to store and use hashEntry type memory blocks. It is possible that
a pointer to a hashEntry is being lost when a new one is inserted in
putHash , or when the old one in remHash is removed. It is also
possible that they are being lost when they are removed in
delHashTable .

Notice that only 13 blocks are lost, even though many more are
added or removed as the test program runs. Therefore, do not
expect to see a leak on every hashEntry that is added, removed, or
deleted.
4-6 Purify User’s Guide

Using your debugger to set breakpoints

1 Start your debugger and set breakpoints in the testHash program
after calls to PutHash , RemHash, and DelHashTable .

% dbx testHash.pure
(dbx) file testHash.c
(dbx) stop at 99
(1) stop at "testHash.c":99
(dbx) stop at 183
(2) stop at "testHash.c":183
(dbx) stop at 194
(3) stop at "testHash.c":194
(dbx) run

Note: See page 3-10 for an explanation of how to use purify_xdb .

% purify_xdb testHash.pure
>v testHash.c
>b 99
Overall breakpoints state: ACTIVE
Added:
 1: count: 1 Active testPutHash: 99: }
>b 183
Overall breakpoints state: ACTIVE
Added:
 2: count: 1 Active testRemHash: 183: }
>b 194
Overall breakpoints state: ACTIVE
Added:
 3: count: 1 Active testDelHashTable: 194: }
>r
Starting process 796: "testHash.pure"
.
.
.

Note: For more information, see “Calling Purify API functions
from a debugger” on page 11-7. For information about using
Purify’s just-in-time debugging feature, see “Enabling JIT
debugging” on page 6-11.

2 Rerun the testhash program.

Sun
OS4 SolarisIRIX

HPUX
Memory Leaks 4-7

Running purify_new_leaks

3 Each time the program stops (at the end of testPutHash ,
testRemHash , and testDelHashTable) , call purify_new_leaks .

By calling purify_new_leaks , you can get a message showing the
new leaks that occurred since the last call to purify_new_leaks . If
no leaks are reported, continue running the program to the next
breakpoint.

stopped in testPutHash at line 99 in file "testHash.c"
 99 }
(dbx) print purify_new_leaks()
.
.
.
purify_new_leaks() = 0
(dbx) cont
.
.
.
stopped in testPutHash at line 194 in file "testHash.c"
 194 }
(dbx) print purify_new_leaks()
.
.
.
purify_new_leaks() = 182

Note: In your own longer-running programs, you can use the New
Leaks button to generate a new leaks summary while the program
is running. See “Using the new leaks button” on page 4-10.

Use this command in
your debugger to call

purify_new_leaks

Purify finds no leaks
at the breakpoint

on line 99

 On line 194, at the
end of the function

testDelHashTable ,
Purify finds 182

leaked bytes
4-8 Purify User’s Guide

4 Use your debugger to take a closer look at the last hashEntry that
was leaked.

(dbx) print *((hashEntry *)0x4f400)
*(hashEntry *) 0x4f400 = {
 key = 0x83328 "49"
 value = 0xf7fff524
 next = (nil)
}
(dbx)

The debugger confirms that this is the last hashEntry in the list
because its next field is NULL. Now look at the source code for
delHashTable , looking for errors relating to the edge case of
handling the last member of the list.

void delHashTable(ht)
 hashtable* ht;
{

int index;
hashEntry* last_entry;
hashEntry* entry;
for (index = 0; index < HASHTABLE_SIZE; index++) {

for (last_entry = NULL, entry = ht[index];
entry;
last_entry = entry, entry = entry->next) {

if (last_entry) {
free(last_entry->key);
free(last_entry);

}
}

}
free(ht);

}

Notice that the inner loop is off by one. The loop deallocates the
entry prior to the present position, thereby failing to deallocate
the last entry in the list. This means that the pointer to the last
hashEntry in each list is being dropped. This happens because the
loop is terminated prematurely while last_entry still points to an
entry, and the memory is never freed.

Inner loop off by 1
Memory Leaks 4-9

Correcting the error

1 To correct this error, add a free for the last hashEntry and its key

at the end of the loop.

void delHashTable(ht)
 hashtable* ht;
{
 int index;
 hashEntry* last_entry;
 hashEntry* entry;
 for (index = 0; index < HASHTABLE_SIZE; index++) {
 for (last_entry = NULL, entry = ht[index];

entry;

last_entry = entry, entry = entry->next) {
 if (last_entry) {

free(last_entry->key);
free(last_entry);

 }
 }

if (last_entry) { /* last_entry left dangling */
free(last_entry->key); /* classic off-by-one error */
free(last_entry); /* free the last one */

}
 }
 free(ht);
}

2 Recompile the program and run it again.

This time Purify should indicate that there are no leaks. You have
successfully fixed the problem.

Using the new leaks button

In longer-running Purify’d programs, you can generate a new
memory leaks summary while the program is running by using
the New Leaks button.

Add this code

Click to generate a new leaks summary while
the program is running
4-10 Purify User’s Guide

For example, if you are testing an X Windows word-processing
program you might:

■ Start the program.
■ Click the New Leaks button.

At this point, Purify might report that there are no new leaks.
■ Perform some action with the program. For example, open a

document.
■ Click the New Leaks button again.

If Purify reports new leaks at this point, you know that they
occurred in the document-opening phase of your program.

In this way, you can isolate memory leaks that occur in a complex
program.

Note: The New Leaks button can generate a leak summary only
when a program is running, not while it is stopped in the
debugger. To get a new leaks summary from the debugger, call the
purify_new_leaks function directly from the debugger.

Disabling memory leaked messages

If you do not want Purify to display a memory leaked message
when the program exits, set the option -leaks-at-exit=no .

This inhibits the automatic call of purify_all_leaks when the
program exits. See Chapter 11, “Using Purify Options and API
Functions” for details about how to use Purify options.
Memory Leaks 4-11

4-12 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
5
 Analyzing File Descriptors
File descriptors represent handles to input and output streams
available to a running program. They are small integer indices
into a fixed table in the kernel’s per-process data structure.

A common problem occurs when a file is opened within a program
loop, or in response to user input, and is never closed. When no
more file descriptors are available, programs usually fail,
reporting a mysterious inability to open a file that can apparently
be opened.

Purify displays a File Descriptors in Use (FIU) message when
your program exits, to help you discover such cases. Purify reports
each open descriptor and where it was opened.

File descriptors in use messages

When a program starts, it can inherit file descriptors from a
parent process. The origin of such inherited descriptors
is invisible to Purify, and the message indicates only
<inherited from parent> . Descriptors 0, 1, and 2 are often used in
this manner to provide stdin , stdout , and stderr , respectively, for
programs. If these descriptors are marked as inherited
descriptors, the stdin , stdout and stderr synonyms are attached.

If a file is open, Purify notes the file’s name and mode in the
message. If it is not a special file, Purify might also be able to
determine the current file offset where the next byte would be
read or written. The call chain shows where in the program the file
was opened.

If a file descriptor is obtained from socketpair , pipe , or certain
other system calls, Purify shows the call chain indicating the
origin. No additional information is available.
5-1

If you duplicate a file descriptor from another file using the dup or
dup2 system calls, Purify notes the call chain of the dup , but copies
any other file information available from the source of the dup .

Purify prints a message for all file descriptors for which select or
poll returns no error. Under some circumstances (for example,
descriptors obtained by ioctls issued to non-standard device
drivers), Purify might not be able to determine details about the
origin of the file, and simply prints the text <unknown> .

Note: Purify reserves file descriptors 26 and 27 for its own use. To
change Purify’s reserved file descriptors, use the -fds option. See
“File descriptor options” on page 12-12.
5-2 Purify User’s Guide

File descriptor leak example

Consider this example of a file descriptor leak:

Purify indicates that 7 file descriptors are in use at the end of the
program execution. Two of these are file descriptors opened by the
program.

Look at the function get_number_from_file . These files are opened
by the call to fopen , and should be closed by the call to fclose .
Notice, however, that if the file does not contain a valid number,
the function returns without closing the opened file. To correct this
file descriptor leak, add a call to fclose before this return .

File descriptors for
standard I/O streams

inherited from the shell

File descriptor used
by the program

Files opened here

File descriptors
reserved for Purify

return without
closing here
Analyzing File Descriptors 5-3

Analyzing FIU messages

A safe FIU message shows the three standard I/O streams and the
two Purify internal file descriptors. You do not need to be
concerned with a few additional file descriptors open at exit, if
they are allocated from functions called only once in the program.

If more than one file descriptor allocated with the same call chain
is still open at exit, it can indicate a program error and you should
investigate it. In the previous example, if the function
get_number_from_file were called on a large number of files, the
program could run out of file descriptors.

Note: Purify’s file descriptor data structures are shared across
parent and child when the child is created using a vfork . If the
child process manipulates files descriptors, it can result in
erroneous messages about the origin of the parent’s descriptors
when the parent exits.

Disabling FIU messages

If you do not want Purify to display an FIU message when the
program exits, set the option -fds-inuse-at-exit=no . This inhibits
the call of purify_all_fds_inuse when the program exits.

Use the Purify API function purify_clear_fds_inuse to ignore file
descriptors that have been opened since the last call to a file
descriptor API function. These file descriptors are not reported by
the next call to purify_new_fds_inuse . They will however be
reported by purify_all_fds_inuse .

For a complete description of the file descriptor API, see “File
descriptor API” on page 12-12.

Notes and limitations

By default, Purify generates FIU messages before calling any
cleanup functions you may have registered with atexit(3) ;
therefore, Purify reports file descriptors closed by such functions
as in-use.
5-4 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
6
 Customizing Purify
This chapter explains how to customize Purify. It includes:

■ Controlling Purify output
■ Mailing Purify output to developers
■ Annotating Purify output
■ Customizing Purify messages
■ Customizing the thread summary message
■ Enabling just-in-time debugging
■ Reporting Purify status at exit
■ Running shell scripts at exit
■ Customizing the Purify Viewer
■ Customizing Purify scripts
■ Managing cached object files
6-1

Controlling Purify output

By default, Purify displays its output in the Purify Viewer.
However, you can also direct Purify output to a log file as ASCII
text, or to a compact-binary view file that you can open later in the
Viewer.

You can generate any two or all three forms of output from the
same run by setting the appropriate options. For a complete list of
options that control Purify output, see “Output mode options” on
page 12-21.

Saving Purify output as ASCII text

If Purify cannot connect to an X Window display or if you specify
the option -windows=no , Purify automatically generates ASCII text
to stderr , interleaving error messages with the program output. In
text mode, Purify discards repeating error messages by default
rather than counting them.

Using shell file redirection syntax

You can redirect Purify output to a text file using standard shell
file redirection syntax. For example:

csh % a.out.pure >& a.out.messages

sh, ksh $ a.out.pure 2> a.out.messages

Creating a log file automatically

Use the -log-file option to automatically redirect Purify
messages to a log file. For example:

-log-file=<filename>.plog

You can use conversion characters in log file names. See “Using
conversion characters in filenames” on page 11-2.

Purify sends the same information to the log file that you see in
the Viewer. Messages are printed fully expanded; however, to
avoid excessive report size Purify does not expand source files,
even when line-number and filename information is available.
6-2 Purify User’s Guide

When you use the -log-file option, Purify does not display the
Viewer by default. To save Purify output to a log file and also
display the Viewer, use the -windows=yes option along with the
-log-file option.

Set the -log-file option to -log-file=stderr to send Purify
output to stderr .

Use the -output-limit option to restrict the size of the log file and
conserve disk space. The -output-limit option specifies the
maximum size of the Purify message in bytes. Purify truncates all
output beyond this size.

Saving Purify output to a view file

A view file is a binary representation of all messages generated in
a Purify run that you can browse with the Viewer or use to
generate reports independent of a Purify run. You can save a run
to a view file to compare the results of one run with the results of
subsequent runs, or share the file with other developers.

Saving a run to a view file from the Viewer

To save a program run to a view file from the Viewer:

1 Wait until the program finishes running, then click the run to
select it.

2 Select Save As from the File menu.

3 Type a filename, including the extension .pv , to identify the run as
a Purify view file.
Customizing Purify 6-3

Creating a view file automatically

You can automatically save Purify output to a view file without
starting the Viewer. This is convenient when you want to run a set
of nightly tests under Purify, then review the results the following
morning.

To automatically save Purify output to a view file, set the option:

-view-file=<filename >.pv

You can use conversion characters in view file names. See “Using
conversion characters in filenames” on page 11-2.

When you use the -view-file option, Purify does not display the
Viewer by default. To also display the Viewer while saving output
to a view file, use the -windows=yes option. For a description of the
-windows=yes option, see “Output mode options” on page 12-21.

Opening a view file

To open a view file from the Viewer:

1 Select Open from the File menu.

2 Select the view file you want to open.

Purify displays the run from the view file in the Viewer. You can
work with the run just as you would if you had run the program
from the Viewer. For example, you can compare it to other runs
and apply suppressions.

You can also use the -view option to open a view file. For example:

% purify -view <filename>.pv

This opens the <filename>.pv view file in a new Viewer.
6-4 Purify User’s Guide

Prestarting the Viewer

You can use the -view option to prestart the Viewer in order to set
options before running a Purify’d program.

% purify -view a.out

This opens an empty Viewer for the program a.out where you can
preset options such as suppressions, then open a view file or run a
Purify’d program.

To prestart a Viewer on a different screen, type:

% purify -view -display=<other_machine>.0 a.out
Customizing Purify 6-5

Mailing Purify output to developers

You can use the -mail-to-user option to have Purify automatically
send the output from a run of a Purify’d program directly to other
developers instead of displaying it in the Viewer. Purify sends the
output in a log-file format.

Use the -mail-to-user option when:

■ You are doing nightly tests and want the results sent
automatically to other developers.

■ You distribute a Purify’d program to other developers and want
the output sent to you when they run the program. (The Purify’d
program must be run locally where Purify is installed and be on
the same operating system as the one where the program was
Purify’d.)

Using the -mail-to-user-option

You can use the -mail-to-user option to have Purify send Purify
messages to one or more developers. For example:

% purify -mail-to-user=chris cc ...

% purify -mail-to-user=chris,pat cc ...

% purify -mail-to-user=devgrp cc ...

By default, Purify does not open the Viewer when you specify the
-mail-to-user option. To also display messages in the Viewer, use
the -windows=yes option along with the -mail-to-user option.
For a description of the -windows=yes option, see “Output mode
options” on page 12-21.

Protecting your run-time option settings

To make sure that the options you specify when you build the
program remain in effect when the program is run in other
locations or by other developers, use the
-ignore-runtime-environment option with the -mail-to-user

option.
6-6 Purify User’s Guide

This prevents other run-time environments from affecting your
program, so developers see exactly what you want them to see. No
matter what directory your program is run in or who runs it, the
run-time options (including suppressions) built into the program
cannot be changed.

For a complete description of the -mail-to-user option, see “Mail
mode option” on page 12-13. For more information about when to
use the -ignore-runtime-environment option, see “Using the
-ignore-runtime-environment option” on page 11-6.

Annotating Purify’s output

You can annotate Purify’s output in order to help reproduce a
particular run, track down an error, or relate events or phases in
your program to error messages. You can also record
environmental or situational details into a log file or view file to
help decode the results of a test run.

For example, you can record the current directory name and the
command line arguments into a log file or view file when running
a batch of tests. This allows you to see how to repeat a particular
run of your program if that particular run generated an error.

In an interactive program, you might record the commands issued
by the user into Purify’s output in order to identify the user
interactions that triggered the Purify messages.

You can use these functions to annotate Purify’s output:

■ Use purify_printf(const char *fmt, ...) to add an
annotation to all forms of Purify output.

■ Use purify_logfile_printf(const char *fmt, ...) to add an
annotation if the output goes to a log file.

If the output is going to a view file, the annotation from
purify_logfile_printf is recorded in the view file but not
displayed. To print the annotation in the Viewer, specify:

% purify -view -logfile= <filename> .plog <filename> .pv
Customizing Purify 6-7

■ Usepurify_printf_with_call_chain(const char *fmt, ...) to
add an annotation similar to purify_printf , and also include the
call chain. This has the effect of counting as an error, triggering
mail if -mail-to-user is set. You can use this function from
within your error handler functions. It is useful for copying the
error message to the log file and reporting the call chain that
caused the error to happen.

Each of these functions takes a format string and a variable
number of arguments, just like printf .

Note: Purify does not support the full % conversion syntax of
printf . You can use the simple conversion characters %d, %u, %n, %s,
%c, %e, %f, or %g. No field width or precision specifiers are allowed,
and the %e, %f, %g conversion characters are equivalent to %10.2f .

For more information about functions for annotating Purify
output, see “Annotation API” on page 12-9.

You can also annotate Purify output by using the option
-copy-fd-output-to-logfile . The option’s value is a list of
file-descriptor numbers, for example: 1,2 . This causes Purify to
interleave all output written to file descriptors 1 and 2 with the
Purify output.

For more information about the -copy-fd-output-to-logfile

option, see “Annotation options” on page 12-9.
6-8 Purify User’s Guide

Customizing Purify messages

You can change the content and appearance of Purify messages,
and control how Purify batches messages.

Controlling the content and appearance of messages

You can control the content of messages by defining the number of
stack frames in the call chain of a message, and whether Purify
prints full pathnames in the call chain. You can also decide
whether to display various messages such as memory leaks,
memory in use, and file descriptors in use when your program
exits.

For a complete list of options for customizing the appearance of
Purify messages, see “Message appearance options” on page 12-18.

Controlling message batching

By default, Purify displays an error message the first time the
error occurs, along with a count of all subsequent occurrences of
the same error. Purify considers errors to be the same if they have
identical call chains.

If you are generating ASCII text in the default first-only mode,
-messages=first , Purify does not increment counts of repeated
errors. You can display all the messages Purify generates, in the
order in which they occur, by setting the option -messages=all .

By default, Purify does not update the counts on the display
continuously, because that would impact performance. Instead,
Purify updates counts only when new messages are displayed. If
you need to correlate repeated occurrences of errors with program
activity interactively, set -messages=all to enable the display of all
messages.

You can have Purify wait until the program terminates before
displaying messages, by setting the option -messages=batch . Purify
does not batch report entries generated when you use log file
Customizing Purify 6-9

functions such as purify_logfile_printf ; it reports them
immediately.

For a complete description of the -messages option, see “Message
batching options” on page 12-19. For a complete list of Purify
functions to control message batching, see “Message batching API”
on page 12-20.

Customizing the thread summary message

Threads are separate, independent execution sequences within a
single process. They share the same address space but maintain
separate execution stacks.

By default, Purify displays a thread-summary message if your
program is linked to a supported thread package. Purify displays
the thread summary message after the memory leak summary.

For a list of supported thread packages, see the README file.

Purify tracks all the threads that are created during the execution
of the program. The thread summary message contains a
description of each thread including its thread id, name, and stack
limits.

For example:

Thread Summary: 6 threads in existence

Thread 1

Stack: (0xef106ad8 0xef106dcc), size = 0x2f4

Thread 2

Stack: (0xef7b11f8 0xef7b143c), size = 0x244

Thread 3

Stack: (0xef005728 0xef005dcc), size = 0x6a4

Thread 4

Stack: (0xef207ac8 0xef207d6c), size = 0x2a4

Thread 5 "Producer"

Stack: (0xeee03410 0xeee03d6c), size = 0x95c

Thread 6 "Consumer"

Stack: (0xeef04498 0xeef04d6c), size = 0x8d4
6-10 Purify User’s Guide

Purify assigns each thread an id in order to keep track of running
threads. The Purify thread id is unrelated to any id defined by the
thread library.

You can specify a name for Purify to use in addition to the thread
id by using the API function purify_name_thread . See “Threads
API” on page 12-28.

How Purify identifies threads

Purify uses the stack pointer to determine the identity of a thread.
When Purify notices a change to the stack pointer, it compares the
new value to the stack areas of known threads. Purify assumes
that a new thread has been created if the stack pointer changes by
0x1000.

You can specify how large the change to the stack pointer has to be
to mark creation of a new stack by using the option
-thread-stack-change . See “Threads options” on page 12-27.

Enabling JIT debugging

With Purify’s just-in-time (JIT) debugging, you can use your
debugger to investigate errors even when you run your application
from outside the debugger. You can have Purify automatically
attach a debugger to your application when selected types of
Purify messages are reported, or have Purify ask you if you want
to start a debugger at the time of the error.

You can also use JIT debugging to start your debugger when it
encounters a watchpoint message. Purify stops just before the
watchpoint.

Warning: If your Purify’d program is already running under a
debugger, do not enable JIT debugging. Attempting to do so will
cause the program to fail.
Customizing Purify 6-11

To enable just-in-time debugging:

1 Select JIT Debug from the Options menu.

Purify opens the Debugging Options dialog:

2 Select the types of messages for which you want Purify to start
your debugger: fatal or corrupting, warnings, or watchpoints.

For a description of fatal, corrupting, and warning error messages,
see “Message severity” on page 10-2. For information about setting
watchpoints, see Chapter 8, “Setting Watchpoints.”

3 Select the debugger you want Purify to start.

You can also type command-line arguments for your debugger.

Note: You can also enable JIT debugging using the -jit-debug

option. See “Miscellaneous options” on page 12-31. You can change
the list of available debuggers, and Purify’s interface to them,
using your ~/.purify.Xdefaults file and the pure_jit_debug

script which is located in the Purify installation directory. See
“Customizing Purify scripts” on page 6-16.

You can have Purify
start your debugger

automatically when it
encounters an error,

or ask you before
starting it

Select types of
messages

Type command-line arguments
for your debugger
6-12 Purify User’s Guide

Reporting Purify status at exit

By default, Purify does not modify the normal exit status of your
program. However, you can have your program exit with a special
exit status if Purify finds any access errors or memory leaks. This
is a convenient way to flag failing runs in test suites.

Use the option -exit-status=yes to enable Purify to insert flags
into your program’s status on exit that indicate types of run-time
errors. These are:

Alternatively, you can replace the call to exit(status) in your
code, or the return status in main , with a call to the
purify_exit(status) function. If you are concerned only about
memory access errors, you can either turn off leak detection at exit
using the option -leaks-at-exit=no , or you can suppress memory
leak and potential leak messages. You can also ignore the
appropriate bits of exit status.

The program summary message from Purify shows your original
exit status before any other bits are OR’ed in.

For a description of exit-processing options, see “Exit processing
options” on page 12-10. For a description of the purify_exit

function, see “Exit processing API” on page 12-11.

Types of unsuppressed Purify errors Bit OR’ed in exit status

Memory access errors 0x40

Memory leaks 0x20

Potential memory leaks 0x10
Customizing Purify 6-13

Running shell scripts at exit

You can invoke an arbitrary shell script when your program exits
or otherwise terminates by using the -run-at-exit option. For
example, you can use a script to move or remove log files or view
files, to note test failure, or to interact with PureCoverage data.

In addition to the %V, %v, and %p conversion characters described in
“Using conversion characters in filenames” on page 11-2, you can
use these conversion characters:

Use the %z sequence to have your exit script act conditionally
when Purify finds something of interest to you. If a call chain is
printed in an access error, a memory leak, or as a result of calling
purify_printf_with_call_chain() , the string is true ; otherwise,
it is false .

For example, if you set the option:

setenv PURIFYOPTIONS '-run-at-exit="if %z ; then \

echo \"%v: %e errors, %l+%L bytes leaked.\" ; fi"'

When your program exits, you might see on stdout :

testprog: 2 errors, 1+10 bytes leaked.

Note: If your program is running in the Viewer, Purify sends any
command output to the X Window where you started the Viewer.

Character Converts to

%z The string value "true" or "false" indicating whether any call
chains were printed, for example, in error or leak reports

%x The program's exit status (0 if the program did not call exit)

%e The number of distinct access errors printed

%E The total number of error occurrences noted

%l The number of bytes of memory leaked

%L The number of bytes of memory potentially leaked
6-14 Purify User’s Guide

For a description of exit-processing options, see “Exit processing
options” on page 12-10. For a description of the purify_exit

function, see “Exit processing API” on page 12-11.

Customizing the Purify Viewer

When you exit your first Purify session, Purify automatically
creates a .purify.Xdefaults file in your home directory. You can
edit this file directly from the Viewer in order to customize the
Viewer. For example, you can:

■ Define the number of lines of source code displayed in a message
■ Change background and highlight colors, and the size and color

of fonts
■ Color code messages

Purify simplifies the task of customizing the Viewer by letting you
edit the .purify.Xdefaults file directly from the Viewer:

1 Select Edit X resources from the Options menu to open the
.purify.Xdefaults file.

2 Edit the .purify.Xdefaults file using your editor.

The .purify.Xdefaults file uses a typical .Xdefaults file format.
For more information about editing an .Xdefaults file, see your
X Window System Users Guide.

3 Restart the Viewer for the changes to take effect.
Customizing Purify 6-15

Customizing Purify scripts

Purify includes several scripts in the <purifyhome> directory:

■ pure_invoke_ddts starts the PureDDTS application when you
click the PureDDTS icon in the toolbar.

■ pure_invoke_purecov starts the PureCoverage application
when you click the PureCoverage icon in the toolbar.

■ pure_run starts a new run of the current Purify’d program when
you click the Run button in the program controls.

■ pure_debug starts a debugger when you click the Debug button
in the program controls.

■ pure_edit starts an editor when you click the Edit program
control or the Edit button.

■ pure_print sends an ASCII version of your Purify run to the
printer when you select Print from the File menu.

■ pure_jit_debug starts just-in-time debugging when you select
JIT Debug from the Options menu.

For more information about the scripts for the program controls,
see “Customizing the program controls” on page 6-17.

To customize a Purify script:

1 Copy the script to a separate directory.

2 Edit the script.

3 Set your path to include the path of the modified script.
6-16 Purify User’s Guide

Customizing the program controls

The program controls allow you to control the building and
execution of your Purify’d application. To display the program
controls toolbar, select Program controls from the View menu.

Each program control button invokes a default command. To edit
the scripts for the program controls, see “Customizing Purify
scripts” on page 6-16.

Runs the shell command pure_run make <program-name> , where
<program-name> is the name of the Purify’d program currently
being viewed.

The Make button uses the pure_run script to run the command in
a new window. The terminal window remains open after the make
is completed. To close the window, press RETURN. You can change
how the new window is created by editing the pure_run script.

Program controls

Make...
Customizing Purify 6-17

Starts a new run of the Purify’d program currently being viewed.
The first time you click Run, the command is filled in with the
previous arguments to the program, if known. If Purify is
currently viewing a running program, the Run button is inactive.

You can change the behavior of the Run button by editing the
pure_run script.

Starts a debugger on the currently viewed Purify’d program, in a
new terminal window. If the program is currently running, the
debugger attaches to it. You can specify the debugger you want
Purify to start by editing the pure_debug script.

Runs the shell command kill %p to kill the currently running
Purify’d program. The Kill button is active only when a Purify’d
program is running. Each time this dialog is used, the %p is
expanded into the current process id (pid).

To send a different signal to your program, you can modify the
command before clicking OK. For example, to terminate a program
with extreme prejudice, modify the command to be kill -9 %p .

Starts an editor on the specified file in a new terminal window. You
can specify the editor you want Purify to start by editing the
pure_edit script.

Warning: The Edit button also uses the pure_edit script.
Therefore, use caution when you modify this script.

Run...

Debug...

Kill...

Edit...
6-18 Purify User’s Guide

Managing cached object files

To improve build-time performance, Purify caches its
instrumented versions of all the libraries and object files that are
used by the program. When you re-build a program, Purify
updates only the new or modified files; otherwise it uses the
cached versions.

You can identify an instrumented cache file by its name. It
includes _pure_ , a Purify version number, and might also include
information about the size of the original file, or the name and
version number of the operating system.

Purify writes Purify’d files to the original file’s directory if that is
writable, or to the global cache directory otherwise.

Purify lets you control how instrumented libraries and files are
cached. You can:

■ Specify the global cache directory
■ Direct Purify to save all cache files in the global cache directory
■ Restrict Purify from caching files in certain directories

See “Build-time options” on page 12-6.

Deleting cached object files

Since Purify rebuilds cached instrumented files as needed, you can
remove them at any time in order to conserve disk space.

Using the pure_remove_old_files script

To remove cache files, use the pure_remove_old_files script
located in the <purifyhome> directory. For example, to remove all
instrumented cache files that are 14 days or older:

% pure_remove_old_files / 14

The first argument (/) specifies the path, the second argument (14)
specifies the number of days. This command removes files 14 days
or older recursively from the root directory / .
Customizing Purify 6-19

Using a cron job

To automate the removal of cache files, create a cron job that
periodically removes the files. For example, to remove files that
have not been accessed in two weeks, type:

% crontab -e

Add this entry to the crontab file:

15 2 * * * <purifyhome>/pure_remove_old_files / 14

This runs pure_remove_old_files each day at 2:15 am, and
removes all cached files starting at the root directory / that have
not been read within the last 14 days.

To remove all of the cache files in the current directory and
subdirectories, use:

% pure_remove_old_files . 0

This is useful in clean targets of makefiles.
6-20 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
7
 Suppressing Purify Messages
You can prevent messages from being displayed in the Viewer by
suppressing them. When you suppress error messages, Purify still
checks all of the code in your program, but it doesn’t display the
suppressed messages. Suppressing messages is useful when:

■ You cannot correct an error, such as an error in a third-party
library for which you do not have the source code

■ You want to focus on specific errors

You can suppress messages directly from the Viewer or by
specifying suppression directives in a .purify file.

This chapter explains how to suppress Purify messages.
It includes:

■ Suppressing messages in the Viewer
■ Making suppressions permanent
■ Specifying suppressions in a .purify file
■ Viewing suppressed messages
■ Removing and editing suppressions
■ Temporarily unsuppressing messages
■ Sharing suppressions between programs
■ Using the -suppression-filenames option
7-1

Suppressing messages in the Viewer

You can suppress messages in the Viewer either during or after a
run of your program.

To suppress an error message in the Viewer:

1 Select the message you want to suppress.

2 Select Suppressions from the Options menu.

This opens a Suppressions dialog containing information about
the selected message.

Suppressions created in the Viewer take precedence over
suppressions in .purify files. However, they apply to the current
Purify session only. Unless you click Make permanent , they do not
remain when you restart the Viewer.

Purify saves
suppressions in
.purify files

Select a message
to suppress

Select where to
suppress the message

When you make a
suppression

permanent, Purify
adds the suppression

directive to the
.purify file

The suppression
directive

Control the depth of
the call-chain match

You can save the
suppression directive
to another .purify
file
7-2 Purify User’s Guide

Selecting where to suppress a message

For Where to suppress , you can select:

■ In call chain: Suppresses a message in a specific call chain. Use the
slider to change the number of functions to match against.

■ In file: Suppresses a message in the source or object file
containing the last function in the call chain.

■ In library: Suppresses a message in the library containing the last
function called in the call chain. This option is available only if
the function is obtained from an archive or a shared library.

Note: Do not suppress errors in third-party code unless you are
sure that the library itself is at fault. Often, errors that appear
in library functions are caused by a program’s misuse of those
functions, or misinterpretation of the programming interface. If
you are sure the library is at fault, report it to the library vendor.

■ In class: For C++ member functions, this suppresses messages in
the class containing the last member function in the call chain.

■ Everywhere: Suppresses the message in all locations where it
occurs.

Making a suppression permanent

To make a suppression permanent, click Make permanent in the
Suppressions dialog. This saves the specified suppression directive
to the ./.purify file.

Saving a suppression directive to another .purify file

To save a suppression directive to another .purify file and have it
also apply to the current program:

1 Click Select file in the Suppressions dialog.

This opens the File Selection dialog.
Suppressing Purify Messages 7-3

2 Specify where you want to save the suppression.

For information about how to suppress messages across multiple
programs, “Sharing suppressions between programs” on page 7-9.

Specifying suppressions in a .purify file

You can specify suppressions directly in a .purify file. The syntax
for specifying suppressions in a .purify file is:

suppress <message-type> <function-call-chain>

For <message-type> , specify the three-character acronym for the
message to be suppressed. You can use upper or lower case, and
wildcards. For example, AB* matches ABR and ABW, while *W
matches ABW, FMW, IPW, NPW, SBW, WPW and ZPW. For a list
of Purify message acronyms, see “Message quick reference” on
page 10-1.

For <function-call-chain> , specify a list of function names
separated by semi-colons. You can replace or augment a function
name by specifying a filename enclosed in double quotes. Purify
compares the filename to source, object, or library names. You can
use wildcards for function and filenames. An unqualified filename
(containing no ‘/’) matches the specified file in any directory; a
qualified filename must match exactly to suppress the message.

For example,

suppress ABR sortFunction; sort*; qsort "libc*"

suppresses ABR messages in the sortFunction function whenever
it is called from a function with the prefix sort , which in turn is
called from the qsort function in the libc library in any directory.

Using "..." syntax

You can use "..." syntax for floating or unanchored matches. For
example,

suppress UMR ...; Xm*
7-4 Purify User’s Guide

suppresses UMR messages in any function beginning with Xm or
any function called directly or indirectly from such a function.

You can use "..." syntax in the middle of a chain. For example,

suppress ABW tzsetwall; ...; main

suppresses ABW messages in tzsetwall when called at any level
below main .

Using "..." syntax is more time-consuming than simple pattern
matches because it causes Purify to match every address in the
call chain with the function name. Without "..." , Purify can
usually make a match at the first name.

Note: "..." reaches only as far as the recorded call chain. For
example, Purify does not suppress a UMR message that is 27
levels below XmInit , if the -chain-length option is set to the
default of 6.

Suppressing error messages in C++ code

To suppress messages in C++ code, use natural C++ notation,
including the function or method argument signature. You cannot
use a mangled function name as reported by tools like nm.

If you do not include the argument signature, Purify matches any
overloaded function of the specified name. For example,

suppress FNH Test::Test

suppresses FNH errors in all Test::Test functions regardless of
their argument signature. However,

suppress FNH Test::Test()

suppresses only the error in Test with zero arguments. So, for
example, it would not suppress errors in a Test::Test(const

char*) function.
Suppressing Purify Messages 7-5

Suppressing messages in the Hello World example

In the Hello World program example discussed in Chapter 2,
Purify reports an ABR error. You can suppress this message by
using any of the following suppression directives:

■ To suppress all ABR errors in _doprnt , use:

suppress ABR _doprnt

■ To suppress ABR errors in _doprnt , called from printf , called
from main , use:

suppress ABR _doprnt; printf; main

■ To suppress all ABR errors in the libc library, use:

suppress ABR "libc*"

■ To suppress array bounds errors from descendants of printf ,
use:

suppress AB* ...; printf

■ To suppress all errors in descendants of libc , use:

suppress * ...; "libc*"

Displaying suppressed messages

To display a message that has been suppressed, select Suppressed
messages from the View menu.

Purify displays the message with the identifier [Suppressed] in
front of it. You can expand a suppressed message to see the
location of the .purify file containing the suppression directive as
well as the details of the message itself.
7-6 Purify User’s Guide

Removing and editing suppressions

Note: If you know the location of the .purify file containing the
suppression, you can edit that file directly without starting the
Viewer.

To remove or edit a suppression from the Viewer:

1 Select Suppressed messages from the View menu to display the
suppressed messages.

2 Expand the suppressed message.

3 Click the Edit button in the suppressed message.

Purify opens the editor positioned at the line matching the
suppression in the .purify file.

4 Edit the .purify file:

To remove the suppression, delete the line or add a # to comment
out the suppression directive. For example:

suppress ABR _doprnt

5 Save your changes and exit the editor.

6 Select Re-read .purify files from the File menu.

Purify redisplays the message.

Temporarily unsuppressing messages

You can use the unsuppress directive to temporarily override a
suppression in a .purify file. The last directive specified in the
.purify file takes precedence over earlier directives. If the last
directive that matches a particular message type and call chain is
an unsuppress directive, Purify does not suppress the message.
Suppressing Purify Messages 7-7

Using the unsuppress directive

To use the unsuppress directive:

1 Select Suppressions from the Options menu.

This opens the Suppressions dialog.

2 Edit the suppression directive by changing the word suppress to
unsuppress.

You can also specify the unsuppress directive directly in a .purify

file. See “Removing and editing suppressions” on page 7-7.

Use the same syntax for the unsuppress directive as you use for the
suppress directive. For example, adding

unsuppress umc *

to the ./.purify file unsuppresses all the UMC messages that are
suppressed by default in <purifyhome>/.purify .

You can also unsuppress a message in a specific function. For
example, if you specify

unsuppress umc this_func

Purify displays all of the UMC messages that occur in this_func .
All other suppressed messages remain suppressed.

For more information about syntax for specifying suppression
directives in a .purify file, see “Specifying suppressions in a
.purify file” on page 7-4.

Note: Avoid using the unsuppress directive to permanently
remove suppressions. It clutters your .purify file. To permanently
remove suppressions, see “Removing and editing suppressions” on
page 7-7.
7-8 Purify User’s Guide

Sharing suppressions between programs

Purify maintains suppressions in .purify files. You can share
suppressions between programs by copying suppressions into
directories used by other programs, and by creating standard
suppressions for your entire site.

Suppression precedence

Purify reads suppressions from all .purify files, processing them
in the order listed below (highest precedence first). Within each
.purify file, the suppression directive at the end of the file takes
precedence.

■ To create suppressions for all Purify’d programs in a specific
directory, use the.purify file in that directory. When you click
Make permanent in the Suppressions dialog, this is where Purify
saves the suppression directive by default.

■ To create suppressions for all Purify’d programs that you run,
use the .purify file in your home directory, $HOME.

■ To create suppressions for all Purify’d programs at your site, use
the default .purify file in the <purifyhome> directory. If this file
is not writable, request that someone with permission add the
directive.

By default, Purify suppresses UMC errors in the
<purifyhome>/.purify file. You can unsuppress UMC errors in a
location with higher precedence than this one.

Creating suppressions for specific operating systems

To create suppressions for a specific operating system, use the
.purify.sunos4 , .purify.solaris2 , .purify.hpux , or
.purify.irix files in any of the above three locations. These files
take precedence over other suppressions in the same directory.
Suppressing Purify Messages 7-9

Using the -suppression-filenames option

You can use the -suppression-filenames option to instruct Purify
to look for suppressions in one or more specified files. This is
helpful when you want to create different suppressions for two
programs located in the same directory.

For example, if you specify:

% purify -suppression-file-names=".purify,.purify.sunos4,\

$HOME/purify_suppressions"

Purify reads suppressions from:

<purifyhome>/.purify

<purifyhome>/.purify.sunos4

$HOME/.purify

$HOME/.purify.sunos4

<progdir>/.purify

<progdir>/.purify.sunos4

$HOME/purify_suppressions

If you specify an unqualified filename (containing no ‘/ ’ characters)
in the -suppression-filenames option, Purify looks for that file in
the <purifyhome> , $HOME, and program directories. Purify
interprets qualified filenames as absolute or relative to the current
working directory.

The default setting for the -suppression-filenames option depends
on your operating system. For a list of the default settings for each
operating system, see “Suppression options” on page 12-26.
7-10 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
8
 Setting Watchpoints
You can monitor a region of memory for specific kinds of memory
accesses by setting a Purify watchpoint on it. Using watchpoints
simplifies the task of debugging problems where memory
mysteriously changes between the time it is initialized and the
time it is used.

Purify watchpoints can report:

■ Reads (WPR)
■ Writes (WPW)
■ Allocations (WPM)
■ Frees (WPF)
■ Coming into scope at function entry (WPN)
■ Going out of scope at function exit (WPX)

When you set a watchpoint, Purify automatically reports the exact
cause and result of each memory access, even when you are not
using a debugger. Since Purify already intercepts every memory
access as part of its dynamic error detection, you can use
watchpoints without any performance degradation.

When to use watchpoints

Watchpoints are useful when:

■ Memory is being improperly freed. Set a watchpoint on the
memory to have Purify report when the memory is allocated and
freed, and who is doing the allocation and freeing.

■ System calls fail intermittently. Set a watchpoint on the global
system variable errno to have Purify report a diagnostic
message whenever errno is written.
8-1

■ A counter is not incrementing properly. Set a watchpoint on the
counter and wait for the improper change.

■ Global data is being overwritten improperly. Set a watchpoint on
the global memory and wait for writes to that region.

■ A segment of read-only data is being changed. Set a watchpoint
on the memory segment that should not change during
execution. The memory segment does not need to begin on page
boundaries, and there is no limit on the size of the memory
segment that Purify can watch.

Why use Purify’s watchpoints?

Watchpoints in debuggers such as gdb are implemented by
single-stepping the program, and checking whether the value of a
watched variable changes after each instruction. Under gdb ,
watching a single 4-byte word can slow the program by a factor of
1,000 or more.

Purify implements watchpoints by monitoring the addresses of the
loads and stores performed by the program. This makes using
Purify’s watchpoints fast; there is no performance loss for
requesting watchpoints, even those covering large regions of
memory.

Purify’s watchpoints are also more sensitive than those of a
debugger. Purify warns you when watched data is read, when
watched data in the heap is allocated or freed, and when watched
data on the stack comes into or goes out of scope as it is included
in the local variables of a function. Purify also catches a write to a
watched variable when the value being written is unchanged.

Note: You can set a watchpoint and then enable Purify’s
Just-In-Time debugging feature to start your debugger when
Purify encounters the watchpoint. For more information about JIT
debugging, see “Enabling JIT debugging” on page 6-11.
8-2 Purify User’s Guide

Calling Purify watchpoint functions

You can set watchpoints by calling one of Purify’s watchpoint
functions, either from your debugger or from the program itself.
Each watchpoint function takes the address of the beginning of
the memory segment to watch and defines a watchpoint over a
certain number of bytes in that segment.

Depending on the function, Purify watchpoints trap when any of
the specified bytes are read, written, allocated, or freed. For
example, the default watchpoint function

purify_watch(char *addr)

watches 4 bytes of memory, trapping when any of the 4 bytes are
written, allocated, or freed. It does not trap when the bytes are
read.

Purify provides other functions to handle the common cases of
watching writes (and optionally reads) over 1, 2, 4, and 8 bytes.
For maximum flexibility, the function

purify_watch_n(char *addr, size *size, char *type)

watches a segment of size bytes starting at addr , trapping
whenever any of those bytes are allocated or freed and, depending
on the type argument, trapping when any of those bytes are read
("r"), written ("w"), or either read or written ("rw").

Purify assigns a number to each watchpoint so you can easily
identify it. To print the list of current watchpoints, call the
function purify_watch_info . To remove a specific watchpoint, call
purify_watch_remove with the appropriate watchpoint number.
Call purify_watch_remove_all to remove all the watchpoints.

For a complete list of the watchpoint functions, see “Watchpoint
API” on page 12-29.
Setting Watchpoints 8-3

Stopping at watchpoints in a debugger

To stop at a watchpoint in a debugger, place a breakpoint on
purify_stop_here . Purify stops at this point for both memory
access errors and for watchpoints.

A watchpoint example

In this example, a watchpoint is set in the program using the
function purify_watch on line 8. This watchpoint monitors all
writes to errno , a system variable that records error codes for
system calls.

On line 10, errno is initialized to 0. On line 11, the system call
close is invoked using an invalid file descriptor 1000. A
watchpoint message is triggered when errno is set to 0, and again
when the close call sets that variable.

Watchpoint set on
errno

First write to errno
8-4 Purify User’s Guide

The watchpoint message is triggered when close is invoked:

Note: The function on the top of the stack in this message is
cerror instead of close . This is because all system calls that set
errno tail-call the function cerror , which sets errno and then
returns to the original caller of the system function.

The system call close
sets errno to 9
Setting Watchpoints 8-5

Saving watchpoints

Purify automatically saves watchpoints between runs of the
Purify’d program in a file called ./<program-name>.watchpoints .
Purify writes this file to the current directory as you set the
watchpoints, then reads it when you restart the program.

You can override where Purify reads and writes this file by setting
the -watchpoints-file=<filename> option:

csh % setenv PURIFYOPTIONS "-watchpoints-file=$HOME/wps"

sh, ksh $ PURIFYOPTIONS="-watchpoints-file=$HOME/wps"; export \

PURIFYOPTIONS

You can use conversion characters in <filename> . See “Using
conversion characters in filenames” on page 11-2.

To remove these saved watchpoints, you can either delete the
<filename>.watchpoints file before executing the program, or call
the function purify_watch_remove_all that removes the
watchpoints and the <filename>.watchpoints file.

To stop Purify from automatically saving watchpoints, set the
-watchpoints-file option to an empty filename:

csh % setenv PURIFYOPTIONS "-watchpoints-file="

sh, ksh $ PURIFYOPTIONS="-watchpoints-file="; export PURIFYOPTIONS

For a complete description of the -watchpoints-file option, see
“Watchpoint options” on page 12-29.

Notes and limitations

You can watch memory in the stack , heap , bss , data , text , and
mmap’d segments of your program.

You can monitor variables or memory addresses within the scope
of a function call (local variables). Purify’s watchpoints indicate
when the variable comes into or goes out of scope.
8-6 Purify User’s Guide

Watchpoints work for system calls, but they do not work for kernel
trap handlers. If you set a watchpoint on the stack, a trap handler
running in kernel mode can set that stack memory without
triggering a Purify watchpoint. Code that processes an interrupt
signal does trigger watchpoints—although the kernel trap handler
does not.

Unlike the .purify file, Purify reads the ./%v.watchpoints file only
when the program starts up.

In optimized code, the compiler can store a value in a register for
later use instead of generating a read each time your program
uses that variable. In these cases, Purify’s read watchpoints are
triggered only on the original access of the variable and not by
subsequent reuses of the register value.

Sun
OS4 Solaris
Setting Watchpoints 8-7

8-8 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
9
 Custom Memory Managers
An important part of Purify’s error detection involves tracking
malloc and free calls. If you use custom memory-management
layers rather than calling malloc or free directly, you might need
to modify them slightly to make them compatible with Purify.

You can preserve your custom memory manager’s semantics and
implementation during normal operation, but provide an alternate
implementation that uses malloc and free when the program is
Purify’d.

Types of custom memory managers

There are five categories of custom memory managers:

■ Malloc veneers are layers over malloc and free that check
error returns so that the callers do not have to. You do not need
to modify malloc veneers when you use Purify because the
actual allocation and freeing is still done by malloc and free .

■ Improved mallocs are allocation packages that are better than
the malloc and free in the C library. For example, they can
reduce memory fragmentation or perform garbage collection.
Improved mallocs present the same interface as the standard
malloc and free functions.

You do not need to modify improved mallocs when you use
Purify because Purify does not replace the malloc , it merely
intercepts calls to it.

■ Fixed-size allocators work by requesting a large block of
memory using malloc and then allocating many fixed size
sub-blocks. These allocators are more efficient than malloc

because the sub-blocks do not need any size overhead.
9-1

You must make minor changes to fixed-size allocators when you
use Purify. See “Modifying fixed-size allocators” on page 9-3.

■ Pool allocators allow an application to specify a location
identifier in addition to a size when making a memory allocation
request, thus reducing the amount of paging. These memory
managers can also support pool-level operations, such as
printing or freeing an entire pool.

You must make minor changes to pool allocators when you use
Purify. See “Modifying pool allocators” on page 9-5.

■ Sbrk allocators have application-specific semantics and use
the system call sbrk to allocate memory rather than using
malloc . To preserve compatibility with library routines, sbrk

allocators generally implement a malloc interface in addition to
their application-specific interface.

You must make several changes to sbrk allocators when you use
Purify. See “Modifying sbrk allocators” on page 9-7.
9-2 Purify User’s Guide

Modifying fixed-size allocators

Suppose you have a special purpose allocator for cells, called
AllocateCell , that first searches its own free list and then, if
needed, calls malloc to allocate an additional block to hold one
hundred cells. FreeCell puts the cell on its own free list.

Since this allocator exists solely for efficiency, the simplest way to
modify it for use with Purify is to override the efficiency measure
by turning AllocateCell and FreeCell into the malloc veneer
category. You can do this by conditionally compiling the allocation
code depending on whether or not the program is Purify’d.

struct Cell *AllocateCell() {

#ifdef PURIFY

 return (struct Cell *)malloc(sizeof(struct Cell));

#else

 ... original code for AllocateCell ...

#endif /* PURIFY */

}

void FreeCell(struct Cell* c) {

#ifdef PURIFY

free((char*)c);

#else

 ... original code for FreeCell ...

#endif /* PURIFY */

}

Custom Memory Managers 9-3

Using purify_is_running instead of #ifdef

You can use the compile-time flag #ifdef PURIFY ; however, it
requires that you re-compile your program with the -DPURIFY flag
set. A simpler solution is to use the purify_is_running function to
determine if the program is Purify’d. For example:

struct Cell *AllocateCell() {

if (purify_is_running()) {

return (struct Cell *)malloc(sizeof(struct Cell));

} else {

... original code for AllocateCell ...

}

}

To usepurify_is_running , add the<purifyhome>/purify_stubs.a

library to the end of your library list for your link line. This
provides a definition of the purify_is_running function that
returns FALSE when you do not use Purify. When you use Purify,
the stubs file is ignored.

Note: The purify_is_running function is useful for purposes
other than modifying custom memory managers. See
“Miscellaneous API” on page 12-33.

If you are using ANSI C, C++, or a compiler that requires function
prototypes, include the <purifyhome>/purify.h file in your source
code in order to declare the purify_is_running function. The
run-time cost of calling purify_is_running is negligible.

Note: Purify includes the source code for purify_stubs.a

(pure_stubs.c and purify.h) without copyright. You can include it
in the libraries you ship to customers, or compile it on other
platforms. This allows you to include calls to Purify API functions
throughout development and testing, without having to re-compile
or change your code for final shipment.
9-4 Purify User’s Guide

Modifying pool allocators

Simple pool allocators allow an application to specify a location
identifier when allocating memory. More sophisticated pool
allocators also support pool-level operations such as freeing or
printing an entire pool with one function call.

If you are using a simple pool allocator, you can defeat the pool
allocator when the program is Purify’d in the same manner
described for fixed-size allocators. See “Modifying fixed-size
allocators” on page 9-3.

If you are using a sophisticated pool allocator, you can take
advantage of Purify’s pool support to implement the pool-level
operations such as freeing a pool. Purify can handle each
allocation request by calling malloc , and also labeling the returned
block with the correct pool-id. Pool-level operations can then be
performed later by mapping a function over all blocks with a given
pool-id.

As with fixed-size allocators, you can use a run-time flag instead of
a compile-time flag. See “Using purify_is_running instead of
#ifdef” on page 9-4, for details.

Purify’s pool interface functions assume that pool-id is a 32-bit
sized datum. For a complete list of functions for pool allocation,
see “Pool allocation API” on page 12-23.

PoolId AllocatePool() {

if (purify_is_running()) {

static PoolId pool_counter = 0;

/* return unique id, but allocate no mem */

return pool_counter++;

} else {

... original code for AllocatePool() ...

 }

}

Custom Memory Managers 9-5

char* AllocateFromPool(PoolId id, int size) {

if (purify_is_running()) {

char* ret = malloc(size);

purify_set_pool_id(ret, id);

return ret;

} else {

... original code for AllocateFromPool ...

 }

}

void FreeToPool(char* mem) {

if (purify_is_running()) {

free(mem); /* this clears the pool id */

} else {

... original code for FreeToPool ...

 }

}

void FreeEntirePool(PoolId id) {

if (purify_is_running()) {

/* call ‘free’ on each block in this pool */

purify_map_pool(id, free);

} else {

... original code for FreeEntirePool ...

 }

}

void PrintPool(PoolId id) {

if (purify_is_running()) {

/* PrintBlock operates on a single block */

/* call PrintBlock on every block in this pool */

purify_map_pool(id, PrintBlock);

} else {

... original code for PrintPool ...

 }

}

9-6 Purify User’s Guide

Modifying sbrk allocators

Custom allocators are written to obtain their memory directly
from the operating system using brk , sbrk , mmap, or some other
method. Usually such allocators also supply a definition of malloc

and free because many libc functions call malloc and the default
malloc does not work when other functions are calling sbrk .

To use Purify with sbrk allocators, you need to write an alternate
implementation of your allocator calling malloc instead of sbrk .
For example, if you have an external function GetPages that calls
sbrk , and your own malloc implementation on top of GetPages , you
could use:

char* GetPages(int n) {

if (purify_is_running()) {

return malloc(n * PAGSIZ);

} else {

return sbrk(n * PAGSIZ); /* original code */

 }

}

/* for Purify, don’t define malloc, free: use default from libc

*/

#ifndef PURIFY /* original case */

char* malloc(int n) {

 ... original code for malloc on top of GetPages ...

}

void free(char* x) {

 ...

}

#endif /* PURIFY */
Custom Memory Managers 9-7

Accessing auxiliary data

Special purpose custom memory allocation facilities can store
additional data with the allocated memory. This data might
include allocation time statistics or pointers to clean up functions
to be called when the memory is freed. Often this is accomplished
by allocating a few extra bytes of memory at the start of each block
to store these values, and returning a pointer to the memory past
these values.

Purify allows you to associate user data with every allocated block
of memory by using the functions purify_set_user_data and
purify_get_user_data .

Auxiliary data example

Extending the pool allocator example described on page 9-5,
assume that the function AllocateFromPool stores the pool-id and
the block size with each block allocated. Without Purify, you might
use the two words immediately preceding the block returned to
the user for these values.

char* AllocateFromPool(int pool_id, int size) {

char *mem = ... get size+8 bytes ..

/* Store the pool_id and size. */

 ((int)mem + 0) = pool_id;

((int)mem + 1) = size;

/* Return the rest of the chunk to the user. */

return (char*)((int*)mem + 2);

}

int BlockSize(char* mem) {

 return *((int*)mem - 1);

}

9-8 Purify User’s Guide

With Purify, you can implement this by using:

#ifdef PURIFY

char* AllocateFromPool(int pool_id, int size) {

 char *mem = malloc(size);

 purify_set_pool_id(mem, pool_id);

 purify_set_user_data(mem, size);

 return mem;

}

int BlockSize(char* mem) {

 return purify_get_user_data(mem);

}

#endif /* PURIFY */

You can also use the user data field to associate a string name to
the memory for debugging purposes:

char* Malloc(int size, char* debug_name)

 char* mem = malloc(size);

 purify_set_pool_id(mem, 0);

 purify_set_user_data(mem, debug_name);

 return mem;

}

void PrintBlock(char* mem) {

 char* debug_name = purify_get_user_data(mem);

 printf("%s\n", debug_name);

 purify_describe(mem);

}

Note: Auxiliary data can only be associated with memory in a
pool. If necessary, you can assign a dummy pool-id of 0 in order to
establish a storage area for the auxiliary data.

See also, the -pointer-offset option in “Memory leak options” on
page 12-16.
Custom Memory Managers 9-9

9-10 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
10
 Purify Messages Reference
Message quick reference
For definitions of message severities, see page 10-2.

Message Description Severity Page

ABR Array Bounds Read Warning 10-3

ABW Array Bounds Write Corrupting 10-4

BRK Misuse of Brk or Sbrk Corrupting 10-5

BSR Beyond Stack Read Warning 10-6

BSW Beyond Stack Write Warning 10-7

COR Core Dump Imminent Fatal 10-8

FIU File Descriptors In Use Informational 10-9

FMM Freeing Mismatched Memory Corrupting 10-10

FMR Free Memory Read Warning 10-11

FMW Free Memory Write Corrupting 10-12

FNH Freeing Non Heap Memory Corrupting 10-13

FUM Freeing Unallocated Memory Corrupting 10-14

IPR Invalid Pointer Read Fatal 10-15

IPW Invalid Pointer Write Fatal 10-16

MAF Malloc Failure Informational 10-17

MIU Memory In-Use Informational 10-18

MLK Memory Leak Warning 10-19

MRE Malloc Reentrancy Error Corrupting 10-20

MSE Memory Segment Error Warning 10-21

NPR Null Pointer Read Fatal 10-22

NPW Null Pointer Write Fatal 10-23
10-1

Message severity

Purify identifies each message by a three-character acronym, such
as ABR for Array Bounds Read error, and classifies it according to
four levels of severity:

■ Fatal: This message indicates imminent abnormal program
termination, unless you have installed error condition handlers.

■ Corrupting: These messages indicate a major program
malfunction.

■ Warning: These messages indicate anomalous program behavior.
Programs with these errors fail sporadically and often
mysteriously.

■ Informational: These messages are simply informational,
providing additional debugging data.

PAR Bad Parameter Warning 10-24

PLK Potential Memory Leak Warning 10-25

SBR Stack Array Bounds Read Warning 10-26

SBW Stack Array Bounds Write Corrupting 10-27

SIG Signal Informational 10-28

SOF Stack Overflow Warning 10-29

UMC Uninitialized Memory Copy Warning 10-30

UMR Uninitialized Memory Read Warning 10-31

WPF Watchpoint Free Informational 10-32

WPM Watchpoint Malloc Informational 10-33

WPN Watchpoint Entry Informational 10-34

WPR Watchpoint Read Informational 10-35

WPW Watchpoint Write Informational 10-36

WPX Watchpoint Exit Informational 10-37

ZPR Zero Page Read Fatal 10-38

ZPW Zero Page Write Fatal 10-39

Message Description Severity Page
10-2 Purify User’s Guide

Message descriptions

ABR Array Bounds Read

An ABR message indicates that your program is about to read a
value from before or after a block or static data item. ABR is a
warning message.

An ABR message can be caused by any of the following:

■ Making an array too small, for example failing to account for the
terminating NULL in a string

■ Being off by one in copying elements up or down an array
■ Forgetting to multiply by sizeof(type) when allocating for an

array of objects
■ Using an array index that is too large or negative
■ Failing to NULL terminate a string
Purify Messages Reference 10-3

ABW Array Bounds Write

An ABW message indicates that your program is about to write a
value before or after a block or static data item. ABW indicates a
corrupting error.

An ABW message can be caused by any of the following:

■ Making an array too small, for example failing to account for the
terminating NULL in a string

■ Being off by one in copying elements up or down an array
■ Forgetting to multiply by sizeof(type) when allocating for an

array of objects
■ Using an array index that is too large or negative
■ Failing to NULL terminate a string
10-4 Purify User’s Guide

BRK Misuse of Brk or Sbrk

A BRK message indicates that your program is using brk or sbrk

directly to allocate memory. Use of brk or sbrk is incompatible with
the use of most implementations of malloc and free . BRK indicates
a corrupting error.
Purify Messages Reference 10-5

BSR Beyond Stack Read

A BSR message indicates that a function in your program is about
to read beyond the stack pointer. BSR is a warning message.

A BSR message is commonly caused by a function returning a
pointer to a local variable that has gone out of scope. If the caller
attempts to use that variable, it can result in a BSR message. To
keep the value valid after the called function returns, make such
variables static .
10-6 Purify User’s Guide

BSW Beyond Stack Write

A BSW message indicates that a function in your program is about
to write beyond the stack pointer. BSW is a warning message.

A BSW message is commonly caused by a function returning a
pointer to a local variable that has gone out of scope. If the caller
attempts to use that variable, it can result in a BSW error. To keep
the value valid after the called function returns, make such
variables static .

Note: Unlike other write errors, such as an ABW, this is not a
corrupting error, since it is always legal to write a value beyond
the end of the stack. However, values beyond the current stack
pointer are subject to change without notice. For example, if your
program takes a context switch or a signal, the value written by
this access might not be reliably re-read.
Purify Messages Reference 10-7

COR Core Dump Imminent

A COR message indicates that your program has received a signal
that is normally terminal. COR indicates a fatal error.

This is an example of a core dump due to a bad pointer—either
bad pointer arithmetic or pointer corruption (indicated by the
preceding IPR).

To turn off COR messages for signals that you handle within your
program, use the -handle-signals and -ignore-signals options.
For details, see “Miscellaneous options” on page 12-31.
10-8 Purify User’s Guide

FIU File Descriptors in Use

An FIU message describes file descriptors that are in use by your
program. FIU is an informational message.

To generate a list of file descriptors in use, set the option
-purify-fds-inuse-at-exit=yes (the default), or the API function
purify_new_fds_inuse , or purify_all_fds_inuse .

Each FIU message describes what is known about the origin of one
open file descriptor. If you see multiple descriptors for the same
file, or from the same call chain in the program, you should be
concerned that you have a file descriptor leak, and your program
might run out of file descriptors.
Purify Messages Reference 10-9

FMM Freeing Mismatched Memory

An FMM message indicates that your program is deallocating
memory using a function from a different family than the one used
to allocate the memory. FMM indicates a corrupting error.

An FMM error can occur when you use new[] to allocate memory
and delete to free the memory. You should use delete[] instead,
otherwise the destructor associated with the memory cannot be
run. Purify reports an FMM message when your program allocates
memory from one family of APIs and then deallocates the memory
from a mismatching family. Purify checks these families:

new/delete

new[]/delete[]

malloc/free

calloc/free

realloc/free

XtMalloc/XtFree
10-10 Purify User’s Guide

FMR Free Memory Read

An FMR message indicates that your program is about to read
from heap memory that has already been freed. FMR is a warning
message.

An FMR message can be caused by reading via a dangling pointer
to a block of memory that has already been freed. It could also be
the result of indexing far off the end of a valid block, or using a
completely random pointer that happens to fall within the heap
segment.
Purify Messages Reference 10-11

FMW Free Memory Write

An FMW message indicates that your program is about to write to
heap memory that has already been freed. FMW indicates a
corrupting error.

An FMW message can be caused by writing via a dangling pointer
to a block of memory that has already been freed. It could also be
the result of indexing far off the end of a valid block, or using a
completely random pointer that happens to fall within the heap
segment.
10-12 Purify User’s Guide

FNH Freeing Non Heap Memory

An FNH message indicates that your program is calling free with
a memory address that is not in the heap (memory in stack, data
or bss). FNH indicates a corrupting error.

An FNH error often occurs due to confusion about pointer
ownership. Look for pointers to strings or objects that are
normally allocated on the heap being initialized with pointers to
constants in the program data or text segments, or on the stack.
This FNH error is caused by attempts to free such addresses.
Purify Messages Reference 10-13

FUM Freeing Unallocated Memory

An FUM message indicates that your program is trying to free

unallocated memory (duplicate free or free of bad heap pointer).
FUM indicates a corrupting error.

An FUM error often occurs due to confusion about pointer
ownership. Only the owner should free heap objects.

If there are many references to a heap object with no one reference
being clearly the longest lived, the object referenced might have a
reference count. Failure to maintain the reference count properly
can also lead to this error.
10-14 Purify User’s Guide

IPR Invalid Pointer Read

An IPR message indicates that your program is about to read from
an address that is outside any valid segment of your program.
Valid segments include program text, data, heap, stack, mmap’d
regions, and shared memory. This usually results in a
segmentation violation.

IPR messages are similar to NPR and ZPR messages, except that
they indicate an invalid reference to memory outside of the zeroth
page. IPR indicates a fatal error.

Note: Earlier versions of Purify reported this type of error as an
MSE.
Purify Messages Reference 10-15

IPW Invalid Pointer Write

An IPW message indicates that your program is trying to write to
an address that is outside any valid segment of your program.
Valid segments include program text, data, heap, stack, mmap’d
regions, and shared memory. This usually results in a
segmentation violation.

IPW messages are similar to NPW and ZPW messages, except that
they indicate an invalid reference to memory outside of the zeroth
page. IPW indicates a fatal error.

Note: Earlier versions of Purify reported this type of error as an
MSE.
10-16 Purify User’s Guide

MAF Malloc Failure

An MAF message indicates that malloc has failed—you have run
out of swap space for the heap to grow. After the message is
delivered, malloc returns NULL in the normal manner. MAF is an
informational message about memory.

Ideally, programs should handle out-of-swap conditions gracefully,
but often do not. If your program next generates an NPR, NPW,
ZPR or ZPW, and then a COR, a caller of malloc has failed to check
the return status and is dereferencing the NULL pointer.
Purify Messages Reference 10-17

MIU Memory In-Use

An MIU message describes heap memory that you are currently
using (memory to which there is a pointer). MIU is an
informational message about memory.

To generate a list of memory blocks in use, use the API function
purify_new_inuse or purify_all_inuse , or set the option
-inuse-at-exit=yes .
10-18 Purify User’s Guide

MLK Memory Leak

An MLK message describes heap memory that you have leaked.
There are no pointers to this block, or to anywhere within this
block. MLK is a warning message.

To generate a list of leaked memory blocks, use the API function
purify_new_leaks or purify_all_leaks , or set the option
-leaks-at-exit=yes (the default).

A memory leak is caused when the last pointer referencing a block
of memory is cleared, changed, or goes out of scope. If the section
of the program where the memory is allocated and leaked is
executed repeatedly, you might eventually run out of swap space.
This is a serious problem for long-running applications.

Memory that is allocated once, referenced by a pointer (perhaps
static or global) and never freed is not a leak and does not
generate an MLK message. Since it is allocated only once, you
cannot run out of memory during extended use of the program.
Purify Messages Reference 10-19

MRE Malloc Reentrancy Error

An MRE message indicates that a reentrant call to malloc , free , or
a related function has been made. Since most default malloc

implementations are not reentrant, this will likely cause
problems. MRE indicates a corrupting error.

Note: A number of C library functions call malloc as a side effect.
Avoid using these in interrupt/signal handlers.
10-20 Purify User’s Guide

MSE Memory Segment Error

An MSE message indicates that your program is attempting to
address a piece of memory that spans potentially non-contiguous
segments of memory. The segments identified include the text
segment, the data segment, the heap, the stack and memory
mapped regions. MSE is a warning message.

An MSE message can be caused by any of the following:

■ Calling a string or block-copy function with too large a size on a
block of memory near the end of the data segment, so that the
access spills into the heap. For example, calling strlen for a
string not properly terminated can have this effect.

■ Incorrect size calculation for read or write buffers, leading to
requests for transactions with buffers of negative or large size.

■ Infinite recursion, causing stack overflow.
Purify Messages Reference 10-21

NPR Null Pointer Read

An NPR message indicates that your program is about to read
from address zero (read from a NULL pointer). An SEGV signal will
result. NPR indicates a fatal error.

One common cause of an NPR error is failure to check return
status for a function expected to return a pointer to a string or an
object. If the function returns NULL on failure, use of the NULL

pointer leads to an NPR error.

Note: HP-UX can be configured so that NPR messages are not
fatal. However, they still represent serious errors. An SEGV

happens only if you use the -z compiler option.

HPUX
10-22 Purify User’s Guide

NPW Null Pointer Write

An NPW message indicates that your program is about to write to
address zero (store to a NULL pointer). An SEGV signal will result.
NPW indicates a fatal error.

One common cause of an NPW error is failure to check return
status for a function expected to return a pointer to a string or an
object. If the function returns NULL on failure, use of the NULL

pointer leads to an NPW error.
Purify Messages Reference 10-23

PAR Bad Parameter

A PAR message indicates that your program has called a common
library function, such as write , with a bad parameter. Typically
Purify warns about bad parameters which involve pointer abuse,
such as passing NULL as the buffer to read or write. PAR is a
warning message.
10-24 Purify User’s Guide

Purify Messages Reference 10-25

PLK Potential Memory Leak

A PLK message describes heap memory that you might have
leaked. You have pointers only to the middle of the region. PLK is a
warning message.

In this example, 100 bytes are reported as potentially lost, not
leaked. ptr does not point to the start of the block; it points 50
bytes into it. The free on line 10 assures that there is no leaked
memory.

Memory in use can sometimes appear as a PLK if the pointer
returned by malloc is offset. A common cause is referencing a
substring within a large string. Another example is when a
pointer to a C++ object is cast to the second or later base class of a
multiply-inherited object. It is offset past the other base class
objects.

Truly leaked memory can sometimes appear as a PLK, if some
non-pointer integer within the program space, when interpreted
as a pointer, points within an otherwise leaked block of memory.
This is rather rare. Inspect the code to differentiate between these
causes of PLK reports.

SBR Stack Array Bounds Read

An SBR message indicates that your program is about to read
across stack frame boundaries. This is similar to an ABR, but
concerns a local variable instead of a malloc ’d block. SBR is a
warning message.

An SBR error can be caused by any of the following:

■ Making an automatic array too small, for example, failing to
account for the terminating NULL in a string

■ Forgetting to multiply by sizeof(type) when allocating for an
array of objects

■ Using an array index that is too large or negative
■ Failing to NULL terminate a string
■ Being off by one in copying elements up or down an array
■ Passing too few arguments to a function

Purify does not support SBR messages on IRIX or HP-UXHPUXIRIX
10-26 Purify User’s Guide

SBW Stack Array Bounds Write

An SBW message indicates that your program is about to write
across stack frame boundaries. This is similar to an ABW, but
concerns a local variable instead of a malloc ’d block. SBW
indicates a corrupting error.

An SBW error can be caused by any of the following:

■ Making an automatic array too small, for example failing to
account for the terminating NULL in a string

■ Forgetting to multiply by sizeof(type) when allocating for an
array of objects

■ Using an array index that is too large or negative
■ Failing to NULL terminate a string
■ Being off by one in copying elements up or down an array

Purify does not support SBW messages on IRIX or HP-UX.HPUXIRIX
Purify Messages Reference 10-27

SIG Signal

An SIG message indicates that your program has received a signal.
SIG is an informational message about signals.

By default, Purify notifies you only about signals that normally
terminate the program. See -handle-signals and -ignore-signals

options on page 12-32.
10-28 Purify User’s Guide

SOF Stack Overflow

An SOF message indicates that your program has overflowed the
stack, probably due to runaway recursion. SOF is a warning
message.

The SunOS 4 dynamic linker (for shared libraries) uses the low
area of the stack segment for special purposes. If the stack size
grows into this area, subsequent calls to shared library functions
can cause the linker to crash the program.

Sun
OS4
Purify Messages Reference 10-29

UMC Uninitialized Memory Copy

A UMC message indicates that an uninitialized value is being
copied from one memory location to another (e.g. an assignment).
Such copies are normally harmless copying of padding fields in
structures. UMC is a warning message.

By default, Purify suppresses UMC messages in the global .purify

file because they can generate excessive output and reduce your
program’s performance. To unsuppress UMC messages, comment
out the line in the <purifyhome>/.purify file that reads:

suppress umc *

by adding a hash mark (#) at the beginning of the line:

#suppress umc *

or add the line:

unsuppress umc *

to the .purify file in the directory where your program resides.
10-30 Purify User’s Guide

UMR Uninitialized Memory Read

A UMR message indicates that your program is about to read
uninitialized memory. UMR is a warning message.

Often, uninitialized memory will be zero, especially during unit
testing. Your program will seem to perform correctly but the UMR
can eventually cause incorrect behavior.

It is common, and correct behavior, for a program to copy
uninitialized data from one variable to another. A frequent case is
during structure assignment when the structure being copied has
inaccessible padding bytes. For this reason, Purify does not report
UMR messages on copies, but instead reports a (suppressed) UMC
and propagates the uninitialized status to the destination of the
copy.
Purify Messages Reference 10-31

WPF Watchpoint Free

A WPF message indicates that your program is about to free a
block of memory containing a watchpoint. WPF is an informational
message about memory.
10-32 Purify User’s Guide

WPM Watchpoint Malloc

A WPM message indicates that your program is about to malloc a
block of memory containing a watchpoint. WPM is an
informational message about memory.
Purify Messages Reference 10-33

WPN Watchpoint Entry

A WPN message indicates that your program has just entered a
function that is allocating local variables on the stack in watched
memory. WPN is an informational message about memory.
10-34 Purify User’s Guide

WPR Watchpoint Read

A WPR message indicates that your program is about to read from
memory that has a read-type watchpoint on it. WPR is an
informational message about memory.
Purify Messages Reference 10-35

WPW Watchpoint Write

A WPW message indicates that your program is about to write to
memory that has a watchpoint on it. WPW is an informational
message about memory.
10-36 Purify User’s Guide

WPX Watchpoint Exit

A WPX message indicates that your program has exited a function
that had allocated local variables on the stack in watched memory.
WPX is an informational message about memory.
Purify Messages Reference 10-37

ZPR Zero Page Read

A ZPR message indicates that your program is about to read from
the zeroth page of memory—read from a bad pointer. An SEGV

signal can result. ZPR is a fatal error.

A ZPR error can be caused by a failure to check return status for a
function expected to return a pointer to a structure or an object. If
the function returns NULL on failure, accessing a structure field
from the NULL pointer leads to a ZPR error.

Note: HP-UX can be configured so that ZPR messages are not
fatal. However, they still represent serious errors. A SEGV happens
only if you use the -z compiler option.

HPUX
10-38 Purify User’s Guide

ZPW Zero Page Write

A ZPW message indicates that your program is about to write to
the zeroth page of memory—store to a bad pointer. An SEGV signal
can result. ZPW indicates a fatal error.

A ZPW error can be caused by a failure to check the return status
for a function expected to return a pointer to a structure or an
object. If the function returns NULL on failure, writing to a
structure field of the NULL pointer leads to a ZPW error.
Purify Messages Reference 10-39

10-40 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
11
 Using Purify Options and API Functions
This chapter describes how to use Purify options and Application
Programming Interface (API) functions. It includes:

■ Purify option syntax
■ Purify option types
■ Purify option processing

And instructions for:

■ Using the -ignore-runtime-environment option
■ Calling Purify API functions from a debugger
■ Calling Purify API functions from your program
■ Linking with the Purify stubs library

For a complete list of Purify options and API functions, see
Chapter 12, “Options and API Reference.”
11-1

Using Purify options

Purify option syntax

A Purify option consists of a word or phrase that begins with a
hyphen. For example:

-leaks-at-exit=no

■ The leading hyphen is required.
■ No space is allowed on either side of the equal sign (=).
■ Purify ignores case, hyphens, and underscores in the option

name. For example, the option -leaks-at-exit is equivalent to
-LEAKS_AT_EXIT and -LeaksAtExit .

■ For options that take a list of directories, you can specify the
directory names separated by spaces or colons (:). For example:

% purify -user-path=’/usr/home/program /usr/home/program1’

or

% purify -user-path=/usr/home/program:/usr/home/program1

■ Specify a list of addresses or signals separated by commas (,).
For example:

% purify -mail-to-user=chris,pat,kam

■ You can use wildcards. For example, in filenames: program*

matches program4 , /dira/dirb/program.o , and
/dira/dirb/program1.o .

Using conversion characters in filenames

You can use conversion characters when you specify filenames for
options such as -log-file , -watchpoints-file , and -view-file .
Purify supports these conversion characters:

Character Converts to

%V Full pathname of the program with “/” replaced by “_”

%v Program name

%p Process id (pid)
11-2 Purify User’s Guide

If the filename is unqualified (does not contain “/ ”), Purify writes
it to the directory where the program resides. Qualified filenames
can be absolute or relative to the current working directory. For
example, if you specify the option:

-log-file=./%v.plog

Purify writes the log file to the current working directory. If the
program is called test , the log file is called ./test.plog.

Purify option types

Purify uses three types of options: boolean, string, and integer.

■ Boolean options take the values yes or no, or true or false .
If you do not specify an explicit value, the value is yes . For
example, the option settings -leaks-at-exit and
-leaks-at-exit=yes are identical.

■ String options can be a string of any kind. String options are
used for program, directory and file names, lists of file descriptor
numbers, and lists of mail users.

If you do not specify an explicit value for a string option, the
value is cleared. For example, the option -log-file=./pureout

routes Purify messages to the file pureout in the current
directory. The option -log-file= , without a value, clears any
default specification of a logfile.

■ Integer options can be set to any whole number. For example,
the option -chain-length=10 increases the length of the printed
function call chains from the default of 6 to 10. An optional sign
can be specified. Integer values cannot be cleared.
Using Purify Options and API Functions 11-3

Purify option processing

You can specify Purify options in the Viewer, in environment
variables, and on the link line. Purify processes options in this
order (highest precedence first):

■ Options specified in the Viewer
■ Options specified in the PURIFYOPTIONS or PUREOPTIONS

environment variables
■ Options specified on the link line

Specifying options in the Purify Viewer

To specify options in the Purify Viewer, select Runtime from the
Options menu.

The Runtime dialog displays the option values in use for the
current program run.

Purify applies the options set in the Viewer on subsequent runs of
the program displayed in the Viewer. Options set in the Viewer do
not modify either the default values in the program, or the
environment variables. When you quit the Viewer and rerun the
application, the option values revert to their original settings.

Note: Purify sends the values of options specified in the Viewer to
the application at start-up time. Therefore, you cannot modify
options while your program is running.

Specifying options in environment variables

You can specify any Purify option in the PURIFYOPTIONS and
PUREOPTIONS environment variables. The option values specified in
PURIFYOPTIONS take precedence over PUREOPTIONS.

Purify applies build-time options specified in environment
variables when a Purify’d application is built. Any build-time
options on the link line override environment variables.

Purify applies run-time options specified in environment variables
when you run the Purify’d program. The environment values in
11-4 Purify User’s Guide

force when you run the program override any defaults specified on
the link line.

If an option is specified more than once in an environment
variable, Purify applies the first value it sees. To add an overriding
value for the -log-file option without changing other options
specified, use a command like:

csh % setenv PURIFYOPTIONS "-log-file=new $PURIFYOPTIONS"

sh, ksh $ PURIFYOPTIONS="-log-file=new $PURIFYOPTIONS"; export\

PURIFYOPTIONS

Setting options for all Pure Software products

You might wish to set options such as -cache-dir=alternate/dir

to apply to all users and all Pure Software products. If your site
has a central shared file that is sourced by all users’ .cshrc or
.profile files, you can use the PUREOPTIONS environment variable
to set options that apply to your entire site and to all Pure
Software products.

Specifying options on the link line

You can specify any Purify option on the link line. For example:

purify -cache-dir=$HOME/pcache -always-use-cache-dir $CC ...

Purify applies build-time options to the Purify build command
being run. Purify builds run-time options into the executable so
that they become the default values for the Purify’d executable.
This is a convenient way to build a program with nonstandard
default values for run-time options. For example:

purify -chain-length=12 $CC ...
Using Purify Options and API Functions 11-5

Using the -ignore-runtime-environment option

You can use the -ignore-runtime-environment option when you
build your executable to make sure that the run-time options you
specify remain in effect whenever the executable is run.

The -ignore-runtime-environment builds into an executable all
the run-time options specified on the link line along with any
run-time options specified in the PURIFYOPTIONS and PUREOPTIONS

environment variables.

The -ignore-runtime-environment option also builds in
suppressions. If you do not explicitly specify the
-suppression-filenames option, Purify uses the default
suppression files .purify and .purify.<platform> .

When the Purify’d program is run, Purify ignores the current
option values set in environment variables in preference to the
built-in values. In the Viewer, Purify lets you display the run-time
options set for the executable but does not let you change them.

Use the -ignore-runtime-environment option when:

■ You want someone else to run your program without their
run-time environment modifying your run-time option
specifications.

■ Your program is started automatically by another program and
you cannot set the environment variable for that program.

■ You have several Purify’d programs running at one time and you
cannot specify options for each program.

■ You use the -mail-to-user option. See “Mailing Purify output
to developers” on page 6-6, and “Mail mode option” on page
12-13.

To find out what options are built into a Purify’d program, use:

% <purifyhome>/purify_what_options <program name>

Note: Use the -ignore-runtime-environment option at build time
only. Purify ignores this option if you specify it at run time.
11-6 Purify User’s Guide

Using Purify API functions

You can call Purify API functions from a debugger or from your
program. Unless otherwise specified, Purify functions return 0,
indicating success.

Calling Purify API functions from a debugger

You can call many Purify functions interactively from a debugger.
Some, such as the watchpoint functions, the leak-detection
functions, purify_describe , and purify_what_colors , are
especially useful when used with a debugger:

(gdb) print purify_describe(addr)

(dbx) call purify_what_colors(buf, sizeof(buf))

(xdb) p purify_describe(addr)

Using the function purify_stop_here

To enhance the power of your debugger, set a breakpoint on the
function purify_stop_here. This causes your debugger to stop on
every Purify error message, right after the message is displayed
and before the error actually occurs in your program:

(gdb) break purify_stop_here

(dbx) stop in purify_stop_here

(xdb) b purify_stop_here

Note: Do not call purify_stop_here directly from your program.
Instead, set a breakpoint on it. Use a call to
purify_stop_here_internal to force a call to purify_stop_here .
Using Purify Options and API Functions 11-7

Calling Purify API functions from your program

To call Purify functions from ANSI C and C++ programs, include
the file purify.h :

include <purify.h>

This header file is located in the same directory as Purify. You
might need to add the compiler option -I<purifyhome> in your
makefile to locate it.

On IRIX, you must also link with the Purify API stubs library. See
“Linking with the Purify stubs library on IRIX” below.

Linking with the Purify stubs library

If you call Purify functions in your program, you should link with
the Purify API stub library. This is a small library that stubs out
all the Purify API functions when you are not using Purify. When
you are using Purify, the stubs are ignored.

Add the library <purifyhome>/libpurify_stubs.a to your link
line.

Linking with the Purify stubs library on IRIX

If you call Purify functions in your program, you should link with
the Purify API stub library. This is a small library that stubs out
all the Purify API functions. When you are not using Purify, these
stubs satisfy the linker; when you are using Purify, the stubs are
overridden by Purify but still required. Purify on IRIX includes
two versions of the stub library:

■ libpurify_stubs.so

■ libpurify_stubs.a

Note: If you are using the N32 Application Binary Interface
(ABI), link with these versions of the stub library:

■ libpurify_stubs_n32.so

■ libpurify_stubs_n32.a

IRIX

HPUXSolarisSun
OS4

IRIX
11-8 Purify User’s Guide

Installing libpurify_stubs.so

In the examples below, replace <purifyhome> with the path to your
Purify installation.

If ld is available when you install Purify, the full pathname is
automatically encoded in libpurify_stubs.so .

If ld is not available, Purify uses the default path
/usr/pure/purify .

If you do not install Purify in /usr/pure/purify and ld is not
available, libpurify_stubs.so is installed without a built-in path.
You can specify the pathname by typing:

% ld -shared -all -soname \

<purifyhome>/libpurify_stubs.so -o \

<purifyhome>/libpurify_stubs.so \

<purifyhome>/libpurify_stubs.so.std

You can also use libpurify_stubs.so without a path, then specify
it at run time by typing:

% cc <program>.c ‘purify -printhomedir‘/libpurify_stubs.so

% setenv LD_LIBRARY_PATH ‘purify -printhomedir‘

% a.out

Linking with libpurify_stubs.so

During development, link your program with the
libpurify_stubs.so library by typing:

cc <program>.c <purifyhome>/libpurify_stubs.so

This resolves any API references in your code and lets you use the
API when you Purify the program.

Warning: Do not ship a program linked with the
libpurify_stubs.so library. It will cause a fatal error when the
library is not found at run time.
Using Purify Options and API Functions 11-9

Linking with libpurify_stubs.a

To produce a program for non-Purify users, link with the
libpurify_stubs.a library by typing:

cc <program>.c <purifyhome>/libpurify_stubs.a

This disables Purify API functions. If you Purify a program linked
with this library, Purify API functions are ignored.
11-10 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
12
 Purify Options and API Reference
This chapter describes Purify options and API functions.

Build-time options quick reference

Build-time options let you control how your program is Purify’d
and linked.

* The -linker and -collector options are not supported on IRIX.

Build-time option Default Page

-always-use-cache-dir no 12-6

-auto-mount-prefix /tmp_mnt 12-6

-cache-dir <purifyhome>/cache 12-6

-collector * not set 12-7

-forbidden-directories system dependent 12-6

-ignore-runtime-environment no 12-8

-force-rebuild not set 12-6

-help 12-8

-linker * system dependent 12-7

-print-home-dir 12-7

-static-checking yes 12-24

-static-checking-guardzone 16 12-24

-static-checking-default safe 12-25

-usage 12-8

-version 12-8

IRIX
12-1

Run-time options quick reference

Run-time options let you specify which errors Purify reports, the
information contained in the error messages, the appearance of
messages, and where they are printed.

Run-time option Default Page

-append-logfile no 12-21

-auto-mount-prefix /tmp_mnt 12-6

-chain-length 6 12-18

-copy-fd-output-to-logfile not set 12-9

-exit-status no 12-10

-fds 26 12-12

-fds-inuse-at-exit yes 12-12

-follow-child-processes no 12-31

-free-queue-length 100 12-14

-free-queue-threshold 10000 12-14

-freeze-on-error no 12-31

-g++ no 12-7

-handle-signals not set 12-32

-ignore-signals not set 12-32

-inuse-at-exit no 12-16

-jit-debug not set 12-31

-leaks-at-exit yes 12-16

-log-file not set 12-21

-mail-to-user not set 12-13

-max-threads 20 12-27

-messages first 12-19

-output-limit 1000000 12-22

-pointer-mask 0xffffffff 12-16

-pointer-offset 0 12-16

-program-name argv[0] 12-8

-run-at-exit not set 12-10
12-2 Purify User’s Guide

-search-mmaps no 12-16

-show-directory no 12-18

-show-pc no 12-18

-show-pc-offset no 12-18

-suppression-filenames system dependent 12-26

-threads no 12-27

-thread-report-at-exit no 12-27

-thread-stack-change 0x1000 12-27

-user-path not set 12-22

-view not set 12-21

-view-file not set 12-22

-watchpoints-file ./<program-name>.watchpoints 12-29

-windows not set 12-21

Run-time option Default Page
Purify Options and API Reference 12-3

API functions quick reference

Unless otherwise specified, Purify functions return 0, indicating
success.

Function Page

purify_all_fds_inuse (void) 12-12

purify_all_inuse (void) 12-17

purify_all_leaks (void) 12-17

purify_all_messages (void) 12-20

purify_assert_is_readable (const char *addr, int size) 12-15

purify_assert_is_writable (const char *addr, int size) 12-15

purify_clear_fds_inuse (void) 12-12

purify_clear_inuse (void) 12-17

purify_clear_leaks (void) 12-17

purify_clear_messages (void) 12-20

purify_describe (char *addr) 12-15

purify_exit (int status) 12-11

purify_get_pool_id (char *mem) 12-23

purify_get_user_data (char *mem) 12-23

purify_is_running (void) 12-33

purify_logfile_printf (char *fmt, ...) 12-9

purify_map_pool (int id, void (*fn) (char *mem,

int size, void *data))

12-23

purify_map_pool_id (void (*fn) (int id)) 12-23

purify_name_thread (const char * name) 12-28

purify_new_fds_inuse (void) 12-12

purify_new_inuse (void) 12-17

purify_new_leaks (void) 12-17

purify_new_messages (void) 12-20

purify_printf (char *fmt, ...) 12-9

purify_printf_with_call_chain (char *fmt, ...) 12-9

purify_set_pool_id (char *mem, int id) 12-23
12-4 Purify User’s Guide

purify_set_user_data (char *mem, void *data) 12-23

purify_start_batch (void) 12-20

purify_stop_batch (void) 12-20

purify_stop_here (void) 12-33

purify_stop_here_internal (void) 12-33

purify_watch (char *addr) 12-29

purify_watch_info (void) 12-30

purify_watch_n (char *addr, unsigned int size, char *type) 12-30

purify_watch_<num> (char *addr) <num>=1,2,4,8 12-29

purify_watch_r_<num> (char *addr) <num>=1,2,4,8 12-29

purify_watch_remove (int watchno) 12-30

purify_watch_remove_all (void) 12-30

purify_watch_rw_<num> (char *addr) <num>=1,2,4,8 12-30

purify_watch_w_<num> (char *addr) <num>=1,2,4,8 12-29

purify_what_colors (char *addr, unsigned int size) 12-15

Function Page
Purify Options and API Reference 12-5

Build-time options

Build-time options Default

-cache-dir <purifyhome> / cache

Sets the global directory where Purify caches instrumented versions of object files
and libraries. See also, “Deleting cached object files” on page 6-19.

-always-use-cache-dir no

Forces all Purify’d libraries and object files to be written to the global cache
directory, even if they reside in writable directories.

-forbidden-directories system dependent

Use this option to specify a colon-separated list of directories into which Purify
cannot write files, even if the directories listed are writable. All the subdirectories of
forbidden directories are also forbidden. The default values are:

/lib:/opt:/usr/lib:/usr/5lib:/usr/ucb/lib:/usr/lang:/usr/local

/lib:/opt:/usr/lib:/usr/4lib:/usr/ucblib:/usr/lang:/usr/local

/lib:/usr/lib:/usr/local

/lib:/usr/lib:/usr/local

-auto-mount-prefix /tmp_mnt

Specifies the directory prefix used by the file system auto-mounter, usually
/tmp_mnt , to mount remote file systems in NFS environments. Use this option to
strip the prefix, if present, in order to improve the readability of source filenames in
Purify reports.

Note: If your automounter alters the prefix, instead of adding a prefix, use:
-auto-mount-prefix=/tmp_mnt/home:/homes

to specify that the real filename is constructed from the apparent one by replacing
/tmp_mnt/home with /homes.

If this option is not set correctly, Purify might be unable to access files on
auto-mounted filesystems. The auto-mounter might not recognize their names.

-force-rebuild not set

Forces your entire program to be reinstrumented (irrespective of whether object
files and libraries have been updated since they were last instrumented).
See -static-checking-guardzone option on page 12-24 for details of when
this is useful.

Sun
OS4

Solaris

HPUX

IRIX
12-6 Purify User’s Guide

-linker system dependent

Specifies the name of the linker that Purify should invoke to produce the
executable. Use this option only if you need to bypass the default linker. The default
linkers are:

/bin/ld

/usr/ccs/bin/ld

Purify does not support the -linker option on IRIX.

Note: Do not use this option to specify PureLink. For instructions on using PureLink
with Purify, see page 1-8.

-g++ no

Purify sets this option automatically if you call the g++ compiler. Purify knows that
the g++ compiler is being used and invokes special processing to avoid spurious
ABR errors with the delete operator. It also sets the default demangling mode so
that g++ mangled function names are properly resolved.

-collector not set

Specifies the name of the collect program to be used to sequence and collect static
constructors in C++ code. You must set this option to the name of the collect
program used by the g++ compiler.

To find the name of the collect program used by the g++ compiler, use:

% g++ -v myprogram.c

For example, if the collect program is:

/usr/local/lib/gcc-lib/sun-sparc-sunos4/4.0/ld

use the command:

% purify -g++=yes \

-collector=/usr/local/lib/gcc-lib/sun-sparc-sunos4/4.0/ld \

g++ myprogram.c

Note: g++ on Solaris 2 does not use a collector for C++ programs. Purify on Solaris
ignores this option.

Note: Purify does not support the -collector option on IRIX.

Build-time options Default

Sun
OS4 HPUX

Solaris

IRIX

Solaris

IRIX
Purify Options and API Reference 12-7

-help

Prints a short help message about how to use the command line options.

-ignore-runtime-environment no

Prevents the run-time Purify environment, including suppressions, from overriding
the option values used in building the program.

This is useful if you are building a Purify’d program for someone else to run, and
you want to make sure that the options and suppressions you specify are in effect
at run time.

Use this option when you use the option -mail-to-user .

-print-home-dir

Prints the name of the directory where Purify is installed, then exits. For example,
you can use this option to build the compiler command when including the
purify.h file from the installation directory:

$CC -c $CFLAGS -I`purify -print-home-dir` myprogram.c

-program-name argv[0]

Specifies the full pathname of the Purify’d program if argv[0] contains an
undesirable or incorrect value. For example, when your program is invoked by an
exec call whose path differs from the argument that it passes as argv[0] to your
program. In such cases, Purify cannot find the program file and therefore cannot
interpret addresses as function names.

You might need to use this option if you find little or no symbolic information in the
messages from your Purify’d program.

-usage

Prints a short help message about how to use the command line options.

-version

Purify prints its version number string to stdout and then exits. For example, you
can identify which version of Purify is in use while running a test suite by
incorporating these lines in your test harness scripts:

#!/bin/sh

...

echo "Run monitored by Purify: `purify -version`"

...

Build-time options Default
12-8 Purify User’s Guide

Annotation options

Annotation API

Note: Purify does not support the full % conversion-character
syntax of printf . You can use the simple conversion characters %d,
%u, %n, %s, %c, %e, %f, or %g. No field width or precision specifiers are
allowed, and the %e, %f, %g characters are equivalent to %10.2f.

Annotation options Default

-copy-fd-output-to-logfile not set

This option appends file descriptor output to the log file. Specify a list of file
descriptors separated by commas. Purify copies output written to these file
descriptors into the log file. This can help you reconstruct what the user did.

For example, to copy output written to stdout and stderr into the log file
interspersed with Purify output, use:

% purify -copy-fd-output-to-logfile=1,2 cc myprogram.c

Annotation functions

int purify_printf (char *fmt, ...)

Prints formatted output from the program to the Viewer, stderr or log file if set.

int purify_printf_with_call_chain (char *fmt, ...)

Prints formatted output and the current call chain to the Viewer, stderr , or log file if
set. For example:

if (detect_error) {

purify_printf_with_call_chain(

"Found bad input value %d\n", in_val);

}

This example displays the specified string and the function-call sequence to this
point. This might help track errant function-call requests without stepping through
the debugger. In this manner, the function purify_printf_with_call_chain

extends the power of debugging using printf .

int purify_logfile_printf (char *fmt, ...)

Prints formatted output from the program to the log file if the -log-file option is
set. If -log-file is not set, this function does nothing.
Purify Options and API Reference 12-9

Exit processing options

See also:

■ -leaks-at-exit on page 12-16
■ -inuse-at-exit on page 12-16
■ -fds-inuse-at-exit on page 12-12
■ -thread-report-at-exit on page 12-27
■ “Running shell scripts at exit” on page 6-14

Exit processing options

-exit-status no

Enables you to control the exit status of your Purify’d program, based upon the
Purify results. If Purify detects unsuppressed access errors, leaks, or potential
leaks, the additional bits are OR’d into the exit status of the program.

Unsuppressed error Bit OR’d in exit status

Memory access errors 0x40
Memory leaks 0x20
Potential memory leaks 0x10

-run-at-exit not set

Specifies an arbitrary shell command to be run when your program exits or
otherwise terminates. In addition to the %V, %v, and %p conversion characters
described on page 11-2, Purify recognizes these conversion characters:

%z String value “true” or “false” indicating whether any call chains were printed
(for example, in error or leak reports)

%x Program’s exit status (0 if the program did not call exit)
%e Number of distinct access errors printed
%E Total number of errors printed
%l Number of bytes of memory leaked
%L Number of bytes of memory potentially leaked

For example, if you set the option:
setenv PURIFYOPTIONS '-run-at-exit="if %z ; then \

echo \"%v: %e errors, %l+%L bytes leaked.\" ; fi"'

When your program exits, you might see on stdout :
testprog: 2 errors, 1+10 bytes leaked.
12-10 Purify User’s Guide

Exit processing API

Exit processing functions

int purify_exit (int status)

This function behaves like the function exit , unless Purify detects any
unsuppressed errors, leaks, or potential leaks, in which case it ORs special flag bits
into the status value you supply. These are:

Unsuppressed error Bit OR’ed in exit status

Memory access errors 0x40
Memory leaks 0x20
Potential memory leaks 0x10

You can replace the call to exit(status) or the return status in main with
this function. If Purify is not running, purify_exit behaves like the regular exit

function.
Purify Options and API Reference 12-11

File descriptor options

File descriptor API

See also:

■ -copy-fd-output-to-logfile on page 12-9
■ Chapter 5, “Analyzing File Descriptors”

File descriptor options Default

-fds 26

Changes the default set of file descriptors used by Purify in case they clash with the
ones used by your program. For example, to use file descriptors 57 and 58 instead
of the default 26 and 27, use: -fds=57

-fds-inuse-at-exit yes

Specifies whether file descriptors in use should be reported at program exit. Use
-fds-inuse-at-exit=no to suppress printing file descriptor messages.

File descriptor functions

int purify_all_fds_inuse (void)

Generates a list of all file descriptors currently open. Returns the number of
currently open file descriptors.

int purify_new_fds_inuse (void)

Generates a list of new file descriptors found since the last call to a file descriptor
API function. Returns the number of new file descriptors.

int purify_clear_fds_inuse (void)

Marks the file descriptors that have been opened since the last call to a file
descriptor API function so that the function purify_new_fds_inuse does not
report them. Returns the number of new file descriptors.
12-12 Purify User’s Guide

Mail mode option

See also:

■ “Mailing Purify output to developers” on page 6-6

Mail mode options Default

-mail-to-user not set

This option specifies the e-mail addresses to which the Purify reports are mailed if
the program reports errors. For example, to send the reports to the user named
“Chris” upon completion of the Purify’d application, use:

% purify -mail-to-user=chris gcc ...

Or specify a list of addresses separated by commas (,).

When mail mode is turned on, by default Purify does not send output to the Viewer
or to stderr unless you specify the option -windows=yes or
-log-file=stderr .

When you use -mail-to-user , you might also want to use the
-ignore-runtime-environment option. See page 12-8.
Purify Options and API Reference 12-13

Memory access options

See also:

■ “Memory access API” on page 12-15
■ Chapter 3, “Memory Access Errors”

Memory access options Default

-free-queue-length 100

Sets the number of entries in the free queue maintained by Purify. When you free a
block, Purify stores it in an FIFO queue. When the queue length is exceeded, Purify
frees the first block queued making it available for reuse. This helps Purify detect
free-memory accesses (FMW, FMR). If you have plenty of swap space, you can use
this option to increase the number of entries queued, thereby increasing the
probability of detecting free-memory accesses.

-free-queue-threshold 10000

Sets the maximum size of freed blocks to be appended to the Purify free queue.
Purify immediately frees blocks larger than this.
12-14 Purify User’s Guide

Memory access API

See also:

■ “Memory access options” on page 12-14
■ Chapter 3, “Memory Access Errors”

Memory access functions

int purify_assert_is_readable (const char *addr, int size)

Simulates a read, generating any ABR, BSR, FMR, IPR, MSE, NPR, SBR, UMR,
WPR or ZPR errors detected and calling purify_stop_here . Returns 0 if errors
are detected, and returns 1 if no errors are detected.

int purify_assert_is_writable (const char *addr, int size)

Simulates a write, generating any ABW, BSW, FMW, IPW, MSE, NPW, SBW, WPW,
or ZPW errors detected and calling purify_stop_here . Returns 0 if errors are
detected, and returns 1 if no errors are detected.

int purify_describe (char *addr)

Prints specific details about the memory pointed to by addr , including its location
(stack, heap, text) and, for heap memory, the call chains of its allocation and free
history.

Returns the pointer passed to it.

int purify_what_colors (char *addr, unsigned int size)

Prints out the memory state of size bytes starting at memory address addr . The
memory state of each byte of memory is represented by one of the letters “R,” “G,”
“B,” or “Y,” corresponding to the colors red, green, blue, and yellow respectively.

Unallocated, uninitialized memory is red. When it is allocated but not yet initialized,
it is yellow. Once written or initialized, it is green. When freed, uninitialized memory
turns from yellow to red, while initialized memory turns from green to blue.

(gdb) print purify_what_colors(buf, sizeof(buf))

color codes of 8 bytes at 0xefffee1c:GGGGYYYY

For more information about color of memory, see “How Purify finds memory access
errors” on page 3-2.
Purify Options and API Reference 12-15

Memory leak options

See also:

■ “Memory leak API” on page 12-17
■ Chapter 4, “Memory Leaks”
■ Chapter 9, “Custom Memory Managers”

Memory leak options Default

-inuse-at-exit no

Specifies whether memory in use is reported at program exit. Memory in use is
memory that has been allocated and to which there are still pointers.

Use -inuse-at-exit=yes to print in-use messages at exit.

-leaks-at-exit yes

Specifies whether memory leaked is reported at program exit. Memory leaked is
memory that has been allocated and to which there are no pointers.

Use -leaks-at-exit=no to suppress printing memory leak messages at exit.

-pointer-mask 0xffffffff

Specifies a mask that lets Purify extract the correct value from custom pointers.

Normally, if your application ORs flags into the upper bits of heap pointers, Purify
cannot follow them to the memory blocks they refer to and might incorrectly report
leaks. For example, if you use the upper 4 bits of pointers for flags, you should use:

-pointer-mask=0x0fffffff

-pointer-offset 0

Tells Purify the size of the extra memory allocated by a custom malloc wrapper.

If you use a malloc wrapper that allocates extra memory for bookkeeping
purposes over and above the size requested and returns an adjusted pointer past
the extra memory allocated, Purify might incorrectly report memory inuse as
potential leaks (PLKs). This option ensures that Purify does not report false PLKs.

-search-mmaps no

Purify automatically sets this option to yes if you use ObjectStore (OSCC).

Tells Purify to search for heap pointers in memory obtained from mmap. Use this
option when using an object-oriented database such as ObjectStore, where mmap’d
databases anchor many blocks of memory that would otherwise be reported as
leaks.
12-16 Purify User’s Guide

Memory leak API

Memory leak functions

int purify_all_inuse (void)

Prints a summary message on all heap memory currently allocated.

int purify_all_leaks (void)

Prints a summary message on all current memory leaks.

int purify_new_inuse (void)

Prints an incremental message on all new heap memory allocations. This is
memory allocated since the last call to the functions purify_new_inuse or
purify_clear_inuse .

int purify_new_leaks (void)

Prints an incremental message on all new leaks, that is, leaks introduced since the
last call to the functions purify_new_leaks or purify_clear_leaks .

All Purify leak-detection functions return the totals of the unsuppressed leaks or
memory in use. This simplifies usage both programmatically and in the debugger.
For example, from the debugger you can use:
(gdb) break event_loop if (purify_new_leaks())

Or from your program, you can use:

event_loop(){

while(1){

do stuff

if (purify_new_leaks()) {

purify_stop_here_internal();

}

}

}

int purify_clear_inuse (void)

Finds memory in use and notes it as found so that future calls to the function
purify_new_inuse do not show the memory in use. This function does not print
a message.

int purify_clear_leaks (void)

Finds leaks and marks them cleared so that the function purify_new_leaks

does not report them. This function does not print a message. It is useful for
ignoring all leaks from a certain portion of code, such as a start-up sequence.
Purify Options and API Reference 12-17

Message appearance options

See also:

■ -leaks-at-exit on page 12-16
■ -inuse-at-exit on page 12-16
■ -thread-report-at-exit on page 12-27
■ -fds-inuse-at-exit on page 12-12

Message appearance options Default

-chain-length 6

Specifies the number of stack frames to be recorded and printed in the function call
chain in a Purify message. This option also affects the extent of the red zone
around memory blocks used by Purify to detect array-bound errors. Since Purify
stores the call chain of the function allocating the memory in the red zone at the
ends of the block, you should set this to a larger value to increase the red zone and
to increase the extent of the area where incorrect array boundary accesses can be
detected. This also changes the memory and swap space used by the program.

-show-directory no

Shows the directory path for each file in the call chain if that information is available.
This information might not be available if the file is not compiled with the compiler
debugging option -g . The directory, if displayed, is stripped of the auto-mounter
prefix. The format of the call chain looks similar to:

func1[/home/myprogram/file.o]

func2[/home/myprogram/file.o]

-show-pc no

Facilitates debugging by showing the full program counter (pc) value in each frame
of the call chain. The format of the call chain is similar to:

func1[file.o pc=0x5678]

func2[file.o pc=0xd2e0]

-show-pc-offset no

Facilitates debugging by appending a pc-offset from the start of the function to each
function name in the call chain. The format of the call chain looks similar to:

func1+0x1234[file.o]

func2+0x4000[file.o]
12-18 Purify User’s Guide

Message batching options

See also:

■ “Message batching API” on page 12-20
■ “Controlling message batching” on page 6-9

Message batching options Default

-messages first

Controls how Purify handles repeated messages that have the same call chain.

-messages=first : Purify displays only the first occurrence of each repeated
message. If the same message is generated again and the output is being sent to
the Purify Viewer, the message is not displayed but the repeat count on the first
message is updated. Purify discards repeated messages when saving output to a
log file.

-messages=batch : Purify batches all error messages and displays them along
with repeat counts when the program exits. This mode is useful when you send
output to a log file or mail-mode report and you want to note the number of
occurrences of each message.

-messages=all : Purify displays each error message in the order generated. This
is useful for some types of interactive debugging, for example, where you need to
correlate repeated occurrences of errors with other program actions.
Purify Options and API Reference 12-19

Message batching API

See also:

■ “Message batching options” on page 12-19
■ “Controlling message batching” on page 6-9

Message batching functions

int purify_start_batch (void)

Enables batch mode, if not already set. Batch mode postpones error reporting and
consolidates identical messages until batch mode is turned off, or the program
exits.

The summarized batch message includes the number of occurrences of each error,
the function call chain, and other details of the first occurrence of the error.

int purify_stop_batch (void)

Disables batch mode. Prints all new messages in the batch and resumes automatic
and immediate reporting.

int purify_new_messages (void)

Prints new messages consolidated in the batch since the last call to
purify_all_messages , purify_new_messages , or
purify_clear_messages .

int purify_clear_messages (void)

Marks new messages in the batch so that purify_new_messages does not print
them.

int purify_all_messages (void)

Prints all messages in the batch.
12-20 Purify User’s Guide

Output mode options

Output mode options Default

-windows not set

Use to control whether Purify opens the Viewer.

If this option is not specified, Purify opens the Viewer unless -log-file or
-mail-to-user is set.

-windows=yes : Purify opens the Viewer, in addition to any other output formats
specifically requested.

-windows=no : Purify does not open the Viewer, but outputs ASCII text to
stderr , unless -log-file , -view-file or -mail-to-user is set.

-log-file not set

If this option is not specified, Purify opens the Viewer unless -windows=no or
-view-file is set.

-log-file=stderr : Purify outputs ASCII text to the program’s stderr stream,
in addition to any other output formats specifically requested.

-log-file=<filename> : Purify saves ASCII output to the named file, in addition
to any other output formats specifically requested.

You can use conversion characters in <filename> . See “Using conversion
characters in filenames” on page 11-2.

-append-logfile no

Appends Purify output to the current log file rather than replacing it.

-view not set

To open an empty Viewer, use
% purify -view <program-name>

To open an empty Viewer on a different screen, use:
% purify -view -display=<myscreen>.0 <program-name>

To open a view file in the Viewer, use:
% purify -view <program-name>.pv

Purify opens the specified file in the Viewer, displaying the same output as when
you ran the Purify’d program interactively. You do not need access to the original
program.
Purify Options and API Reference 12-21

See also:

■ “Controlling Purify output” on page 6-2

-view-file not set

If this option is not set, Purify opens the Viewer unless -windows=no ,
-log-file , or -mail-to-user is set.

-view-file=<filename> : Purify writes compact binary data to the specified file,
in addition to any other output formats specifically requested.
Use purify -view <filename> to view the resulting file.

You can use conversion characters in <filename> . See “Using conversion
characters in filenames” on page 11-2.

-output-limit 1000000

Use with the option -log-file to restrict the size of the log file and to conserve
disk space. The value of this option specifies the maximum size of the Purify
message in bytes. Purify truncates all output beyond this size.

-user-path not set

Specifies a list of directories in which to search for programs and source code. You
can specify full pathnames separated by spaces or colons (:). For example:

setenv PURIFYOPTIONS -user-path=/usr/home/prog1:/usr/home/prog2

Purify searches for the executable file from which to read the symbol table in your
$PATH, then in -user-path . See also -program-name .

When searching for source code, Purify looks for the file in the full pathname
specified in the debugging data, then in directories listed in -user-path , and
finally in the current directory.

Output mode options Default
12-22 Purify User’s Guide

Pool allocation API

See also:

■ “Modifying pool allocators” on page 9-5

Pool allocation functions

void purify_set_pool_id (char *mem, int id)

Sets the pool id for the specified memory mem to id .

int purify_get_pool_id (char *mem)

Returns the pool id associated with the pool of memory mem.

void purify_set_user_data (char *mem, void *data)

Sets the auxiliary user data associated with the pool of memory mem to data .

void* purify_get_user_data (char *mem)

Returns a pointer to the auxiliary user data associated with the pool of memory
mem.

void purify_map_pool

(int id, void (*fn) (char *mem, int size, void *data))

Applies the function fn to all members of the pool of memory identified by pool-id
id. The arguments to the function fn are: the memory pointer (mem), the size of
the memory(size), and the auxiliary user data associated with the pool (data).

void purify_map_pool_id (void (*fn) (int id))

Applies the function fn to each pool id known to the system.
Purify Options and API Reference 12-23

Static checking options

Static checking options Default

-static-checking yes

Enables instrumentation for array bounds checking of static data.

In the default mode, -static-checking=yes , Purify looks first in the .purify

directive files for static-checking directives for a given object file, then it checks the
command-line options. If Purify does not find any static checking options, it defaults
to instrumenting in safe mode with a guard zone of 16 bytes.

If you specify -static-checking=no , static checking is completely disabled,
regardless of whether you specify Purify directives for a given object file.

-static-checking-guardzone 16

Sets the size of the guard zone inserted between variables in the data section. The
default value is 16 bytes; however, for arrays of large structures, this value might be
too small to catch a reference beyond the last element.

To set the guard zone for specific files, add the following directive to a .purify file:

static_checking_guardzone <integer value> <filename>

You can include wildcard characters in <filename> . For example:
program*.o matches /dira/dirb/program.o , /dira/dirb/program1.o ,
and program4 .o.

For more information about how to specify directives in a .purify file, see
page 7-4.

Note: The size of the guard zone affects the way a file is instrumented. To change
the guard zone size of a file that is already instrumented, you need to relink your
program to cause it to be reinstrumented with the new guard zone size. To cause
your entire program to be reinstrumented with the new guard zone size, use the
-force-rebuild option. See page 12-6.

Static checking options continued on next page.
12-24 Purify User’s Guide

See also:

■ “How Purify checks statically allocated memory” on page 3-4

-static-checking-default safe

Controls the default behavior of static checking in the absence of specific entries in
directive files.

If never is specified, static checking is disabled.

If minimal is specified, Purify inserts guard zones only at the beginning and end of
the data section for a given object file.

If the default safe is specified, Purify inserts guard zones only between data
variables if there are no data section relative relocations. If an object file contains a
data section relative relocation, Purify instruments that file in minimal mode.

If aggressive is specified, Purify inserts guard zones between data variables
even if it finds data section relative relocations. However, the relocations must be to
addresses that correspond to a known data variable.

To control the behavior of static checking for specific object files, add the following
directive to a .purify file:

static_checking_default [never|minimal|safe|aggressive] <filename>

You can include wildcard characters in <filename> .

For more information about how to specify directives in a .purify file, see
page 7-4.

Static checking options Default
Purify Options and API Reference 12-25

Suppression options

See also:

■ “Static checking options” on page 12-24
■ “Using the -suppression-filenames option” on page 7-10

Suppression options Default

-suppression-filenames system dependent

Specifies the directive files for specific programs or specific operating systems.
The default suppression files are:

.purify,.purify.sunos4

.purify,.purify.solaris2

.purify,.purify.hpux

.purify,.purify.irix

Sun
OS4

Solaris

HPUX

IRIX
12-26 Purify User’s Guide

Threads options

See also:

■ “Threads API” on page 12-28
■ “Customizing the thread summary message” on page 6-10

Threads options Default

-threads no

Enables thread support. Purify enables this automatically when your program is
linked with a supported thread package.

Use -threads=no to disable thread support.

-max-threads 20

Specifies the maximum number of threads in a program. If you expect to use more
than 20 threads, set this option to avoid overflowing the tables that record thread
data.

-thread-report-at-exit no

Specifies whether or not the threads summary is printed when the program exits.
Use -thread-report-at-exit=no to suppress printing a thread summary at
exit.

Purify enables this automatically when your program is linked with a supported
thread package.

-thread-stack-change 0x1000

Specifies the minimum size of a change to the stack pointer that signals a thread
context switch.

Programs that allocate large data structures on the stack might need to increase
this value. Programs that create threads whose stacks are very close to one
another might need to decrease it.
Purify Options and API Reference 12-27

Threads API

See also:

■ “Threads options” on page 12-27
■ “Customizing the thread summary message” on page 6-10

Threads functions

int pure_name_thread(const char * name)

Associates the specified name with the id of the current thread. Returns 0.

Purify uses this name in all messages that mention this thread. For example:

UMR: Uninitialized memory read

 This is occurring while in thread 6 "Consumer":

 consumer_loop [test.c:213]

 do_consumer_loop [test.c:236]

 writer_to_stdio [test.c:244]

 _thread_start [libthread.so.1]

Reading 4 bytes from 0xeee03d5c on the stack of

thread 5 "Producer".
12-28 Purify User’s Guide

Watchpoint options

Watchpoint API

Watchpoint options Default

-watchpoints-file ./<program-name>.watchpoints

Specifies the filename where Purify saves watchpoint settings. To disable saving
watchpoints in a file, set this option to an empty filename, using:

% setenv PURIFYOPTIONS -watchpoints-file=

You can use conversion characters in the filename. See “Using conversion
characters in filenames” on page 11-2.

Watchpoint functions

int purify_watch (char *addr)

int purify_watch_<num> (char *addr) <num>=1,2,4,8

int purify_watch_w_<num> (char *addr) <num>=1,2,4,8

These functions specify watchpoints that detect writes, allocations, frees, and entry
and exit of memory addresses. The purify_watch_<num> and
purify_watch_w_<num> functions are identical. You can specify watchpoints for
variables of 1, 2, 4, and 8 bytes. The purify_watch function watches 4 bytes.

(gdb) print purify_watch_1(&my_char)

(dbx) print purify_watch_w_8(my_double_ptr)

(xdb) p purify_watch_1(&my_char)

These functions return the number assigned to the watchpoint.

int purify_watch_r_<num> (char *addr) <num>=1,2,4,8

Specifies a watchpoint that detects reads, allocations, frees, and entry and exit of
memory addresses. Use to specify watchpoints for variables of 1, 2, 4, and 8 bytes.

(gdb) print purify_watch_r_1(&read_only_char)

This function returns the number assigned to the watchpoint.

Watchpoint functions continued on next page.
Purify Options and API Reference 12-29

See also:

■ Chapter 8, “Setting Watchpoints”

int purify_watch_rw_<num> (char *addr) <num>=1,2,4,8

Specifies a watchpoint that detects reads, writes, allocations, frees, and entry and
exit of memory addresses. <num>=1, 2, 4, or 8. You can specify watchpoints for
variables of 1, 2, 4, and 8 bytes.

(gdb) print purify_watch_rw_1(&rw_char)

This function returns the number assigned to the watchpoint.

int purify_watch_n (char *addr, unsigned int size, char *type)

Sets a watchpoint on an arbitrary-sized buffer.
addr specifies the address of the beginning of the buffer.
size specifies the number of bytes to watch.
type specifies whether to watch for writes ("w"), reads ("r"), or both ("rw").

(gdb) print purify_watch_n(buf, sizeof(buf), "rw")

(dbx) print purify_watch_n(write_only_buf,100,"w")

This function returns the number assigned to the watchpoint.

For interactive use, it is sometimes easier to call purify_watch_n with
type = 1 , 2, or 3 instead of r , w, or rw respectively.

int purify_watch_info (void)

Lists all the active watchpoints and returns 0.

int purify_watch_remove (int watchno)

int purify_watch_remove_all (void)

The function purify_watch_remove removes the watchpoint specified by
watchno. The function purify_watch_remove_all removes all watchpoints.
Both functions return 0.

Watchpoint functions
12-30 Purify User’s Guide

Miscellaneous options

Miscellaneous options Default

-follow-child-processes no

Controls whether Purify monitors child processes created when a Purify’d program
forks. If you do not specify -follow-child-processes , Purify does not follow
child processes.

If this option is set to yes , Purify invokes a new Viewer (if appropriate) and monitors
the progress of the child process separately from the parent, reporting access
errors and memory leaks.

-freeze-on-error no

If this option is set, when an error is reported to the Purify Viewer it delays sending
the response back to the application, which usually causes the application to
freeze. This is useful when you want to explore the relationship between error
reports and program activity.

While the application is frozen, two new buttons appear on the message display.
Press Continue to continue to the next error message. Press Reset
freeze-on-error then Continue to continue uninterrupted.

Note: Do not use this feature with a debugger. Instead, set a debugger breakpoint
in the function purify_stop_here . When the application is frozen by the Viewer,
the debugger freezes also, so you cannot examine variables or obtain stack traces.

-jit-debug not set

Enables just-in-time debugging, instructing Purify to automatically start a debugger
when it reports a message of the type you specify. You can use your debugger to
investigate errors even when you run your application from outside the debugger.

Specify a list of keywords separated by commas. For example:

-jit-debug=”error, warning, ask, watchpoint”

ask Purify asks you if you want to start the debugger when it
encounters the specified type of message

error Purify starts a debugger for fatal or corrupting messages
warning Purify starts a debugger for warning messages
watchpoint Purify starts a debugger for watchpoint messages

For a description of message severities, see “Message severity” on page 10-2.

Continued on next page.
Purify Options and API Reference 12-31

-jit-debug option continued:

You can change the list of available debuggers, and Purify’s interface to them, using
your ~/.purify.Xdefaults file and the pure_jit_debug script which is located in the
Purify installation directory. See “Customizing Purify scripts” on page 6-16.

JIT debugging can also be enabled from the Viewer. See “Enabling JIT debugging”
on page 6-11.

-handle-signals

-ignore-signals

not set
not set

Purify installs a signal handler for many of the possible software signals that can be
delivered to a Purify’d process. The signal handler outputs a SIG or COR message
to the Viewer or log file before passing control to the user or to the default signal
handler. The initial default signals handled by Purify are:

SIGHUP,SIGINT, SIGQUIT, SIGILL, SIGIOT, SIGABRT, SIGEMT,

SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGTERM, SIGXCPU,

SIGXFSZ, SIGLOST, SIGUSR1, SIGUSR2

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGABRT, SIGEMT, SIGFPE,

SIGBUS, SIGCANCEL, SIGPIPE, SIGSEGV, SIGSYS, SIGTERM, SIGUSR1,

SIGUSR2, SIGPOLL, SIGXCPU, SIGXFSZ, SIGFREEZE, SIGTHAW,

SIGRTMIN, SIGRTMAX

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGABRT, SIGEMT, SIGFPE,

SIGBUS, SIGSEGV, SIGSYS, SIGPIPE, SIGTERM, SIGUSR1, SIGUSR2,

SIGLOST, SIGRESERVE, SIGDIL, SIGXCPU, SIGXFSZ

SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGABRT, SIGEMT, SIGFPE,

SIGBUS, SIGCPU, SIGSEGV, SIGSYS, SIGPIPE, SIGALRM, SIGTERM,

SIGUSR1, SIGUSR2, SIGTSTP, SIGTTIN, SIGTTOU, SIGVTALRM,

SIGPROF, SIGXCPU, SIGXFSZ

To ignore signals in this list, set -ignore-signals to a comma-delimited list of the
signals to be ignored. For example: -ignore-signals=SIGSEGV,SIGBUS

To handle additional signals, set -handle-signals to a comma-delimited list of
the additional signals. For example: -handle-signals=SIGALRM,SIGCHLD

Continued on next page.

Miscellaneous options Default

Sun
OS4

Solaris

HPUX

IRIX
12-32 Purify User’s Guide

Miscellaneous API

-handle-signals , -ignore-signals continued:

Purify does not handle SIGKILL , SIGSTOP, or SIGTRAP signals, since doing so
interferes with normal program operation. If you specify these signals in
-handle-signals , Purify silently ignores them.

Note: The default action on delivery of SIGALRM terminates the process. Purify
does not handle this signal by default, since it is used internally by functions such
as sleep . However, if you see a process terminated with a message like “Alarm
clock,” you can set -handle-signals=SIGALRM to get a report when the
program terminates. You can also add the following suppression directive to
a .purify file to silence the signal message when used in the sleep function:

suppress SIG sleep

See “Specifying suppressions in a .purify file” on page 7-4.

See the man pages for signal and sigmask, and the /usr/include/signal.h

and /usr/include/sys/signal.h files for more information on signals.

Miscellaneous functions

int purify_is_running (void)

Returns 1 if the executable is Purify’d, 0 otherwise. You can use this function to
enclose special purpose application code to execute in the Purify’d environment.
For example:

if (purify_is_running()) {

install_gui_leaks_button();

}

int purify_stop_here (void)

Sets a breakpoint on purify_stop_here to cause your debugger to stop on
every Purify error message just before the error actually occurs. Do not call
purify_stop_here directly from your program. Instead, set a breakpoint on it.

int purify_stop_here_internal (void)

Manually triggers a breakpoint you’ve set on purify_stop_here .

Miscellaneous options Default
Purify Options and API Reference 12-33

12-34 Purify User’s Guide

P U R I F Y U S E R ’ S G U I D E
13
 Common Questions
This chapter contains answers to common questions about:

■ Building Purify’d programs, this page
■ Running Purify’d programs, page 13-5
■ General questions, page 13-9

Questions about building Purify’d programs

How much swap space does a Purify’d program use at
build time?

At build time, a Purify’d program uses swap space equal to
approximately two to ten times the size of the program’s largest
uninstrumented object file or library.

Can I Purify just part of my program?

No. Purify needs to keep track of the state of the entire program’s
memory as all of your program modifies it. If you tried to Purify
only a part of your program, initialization in the non-Purify’d
portion would not be noted, causing many spurious Purify reports.

Can I tell Purify to ignore certain libraries or object files?
I don’t care about errors in them.

No. However, while you cannot tell Purify to skip checking in code
that you are not working on, you can suppress error reports from
this code. Note that errors that show up in library functions are
often caused by your program’s misuse of those functions, or
misinterpretation of the function’s programming interface. See
Chapter 7, “Suppressing Purify Messages,” for more information.
13-1

Can I make Purify put everything in the cache when my
project directory is full?

Yes. Use:

% setenv PURIFYOPTIONS -always-use-cache-dir=yes

Can I delete all those <filename>_pure_*.o files?

Yes. See “Deleting cached object files” on page 6-19.

 Why do I get this ld warning?

ld: /usr/purify/cache/lib/libc_pure.300.sa.1.7: warning: table
of contents for archive is out of date; rerun ranlib(1)

Your workstation’s clock is out of sync with respect to your file
server. To get them back in sync, become root and use the
command:

rdate <file-server>

Why do I get this message?

malloc failed with request for 12345678 bytes?

You have run out of swap space. You can build on a machine that
has more swap space, or add additional swap space. Purify
provides instructions in the full text of the message. On SunOS 4,
the message might look like the one below; however, a similar
message appears on other platforms.

malloc failed with request for 12345678 bytes. Your machine is
out of swap space. Use ‘/usr/etc/pstat -s’ to see how much swap
is available. You can increase available swap space by quitting
other programs, or by using ‘swapon’ and ‘mkfile’ (see their man
pages). Note that the first time you Purify your application,
Purify needs to build all the libraries, and will use more swap
space than it will subsequently.

For SunOS 4, use the command /usr/sbin/swap -a or
/usr/etc/pstat -s to see how much memory you have. Use swapon

and mkfile to add swap space.

Sun
OS4

Sun
OS4
13-2 Purify User’s Guide

For Solaris, use the command /usr/sbin/swap -a or
/usr/sbin/swap -s to see how much memory you have. Use mkfile

to add swap space.

For HP-UX, use the command /etc/swapinfo to see how much
memory you have. Use swapon to add swap space.

For IRIX, use the command /sbin/swap -s to see how much
memory you have. Use mkfile to add swap space.

For example, when you use /usr/etc/pstat -s on SunOS 4, you
might get:

24592k allocated + 7472k reserved = 32064k used,
11692k available

In this case, the current swap space totals 32064 + 11692K ≈ 44M .
You need to add an additional 13 megabytes for a total of 57
megabytes of swap space.

Why do I get a linker error using Purify, while without
Purify there is no linker error?

If you are using /bin/ld and your link line is long it might return
with a message like:

ld: libfoo.a: No such file or directory

Purify might increase the link line sufficiently to expose this
shortcoming in /bin/ld . You should be able to work around the
problem with:

% unsetenv LD_LIBRARY_PATH

or by linking statically (using the -Bstatic option):

% purify cc -Bstatic -o prog prog.c

Solaris

HPUX

IRIX

Sun
OS4
Common Questions 13-3

13-4 Purify User’s Guide

What should I do if I get this message?

ld: libw_ui_pure_300.a: warning: archive has no table of
contents?

Run the ranlib program on the library. This happens if the ranlib

command issued by Purify failed, for example due to a lack of
swap space.

What should I do if I get this message?

ld.so can’t find file -lc_pure_NNNN
(or another filename).

You might have a dynamic linker deficiency. Try removing the
directory within the Purify cache that contains the library that
ld.so complains it cannot find. Then, rebuild with Purify to
rebuild the shared directory and the shared libraries.

What should I do if I get this message?

ranlib: warning: libutil.a(util.o): no symbol table

You can ignore this message. It indicates that the object file util.o

is empty. The source file probably contained #ifdefs that were all
false.

Why do I get several warning messages?

While processing file

/dir/libfoo.a: Warning: Reloc of type 6 at 0x330 references
unknown segment 5. Ignored.

These messages are followed by the message:

PureLink1.1: Bad File: bad symbol (unknown type 0x5) in
modulell_pure_210.a

There is an incompatibility with GNU's assembler (GAS). To
verify which assembler is being used, pass the option -v to the
compiler. Then pass the -v to the specific assembler, for example:

% /bin/gnu/tools/as -v

To fix the problem use /bin/as instead. You can create a symbolic
link if necessary.

Sun
OS4

Sun
OS4Solaris

Sun
OS4Solaris

Sun
OS4

What should I do if I get the warning?

ranlib: can’t create __.SYMDEF: Permission denied?

You are trying to write to the current directory that does not have
write permissions. You should change to a writable directory or
modify the permissions of the current directory.

Questions about running Purify’d programs

How much swap space does a Purify’d program use at run
time?

At run time, a Purify’d program uses approximately 1.5 times the
swap space required by the non-instrumented program. Purify
also uses swap space for an error processing process it creates.

How does a Purify’d program perform at run time?

On average, your Purify’d program will run two to five times
slower than your non-Purify’d program. The exact speed depends
on how many errors Purify finds in your program, how your
program uses memory, and the size of your program’s virtual
memory relative to your machine’s real memory (RAM).

If your Purify’d program runs more than five times slower, it
might be thrashing, that is, spending an excessive amount of time
paging to disk. Use the vmstat command to see how much time
your program is spending in kernel mode as opposed to user mode.

Typically, a program should be in user mode more than 80 percent
of the time. If user mode drops to less than 50 percent, run your
program on a machine with more real memory, try to increase the
locality of your program’s memory references to reduce paging, or
increase the real memory of your machine. You can also reduce the
call chain length that Purify uses. See the -chain-length option
on page 12-18.

Sun
OS4
Common Questions 13-5

I am getting a lot of UMR errors from Purify. Can I
suppress errors?

Yes. <purifyhome>/.purify is the default suppressions file. See
Chapter 7, “Suppressing Purify messages” for more information.

My program runs fine without Purify. What should I do
when my Purify’d program exits prematurely and I get:

system error 24 - too many open files

By default, only 64 file descriptors can be in use at once by a
program. When more than 64 files are used you will get the system
error 24. Purify adds 2 file descriptors to your program, and if that
exceeds the 64 file limit, your program will get this error.

You can increase the number of file descriptors allowed to work
around this problem. This is a kernel modification that can be
done by your system administrator. You can also use the limit

command to add more file descriptors without having to change
the kernel.

How do I tell which stack variable is uninitialized from
this message?

Reading 4 uninitialized bytes from 0xff7ffaac

Look at the offending source line, and use a debugger to print the
addresses of the variables used. Find the variable whose address
matches the address in the report. Purify will always print the
name of the variable if it can.

Why does Purify report a memory leak in this example?

int main(){
int foo = malloc(10);

}

Since your program ends without calling exit , it returns to its
caller, function start . When it returns, variable foo goes out of
scope, causing a memory leak. The same thing happens if your
program ends by calling return .

Sun
OS4
13-6 Purify User’s Guide

If you add a call to exit to the end of this program, no leak will be
reported. When main calls exit , foo is still in scope and anchors the
10-byte memory block.

Why are the line numbers listed by Purify occasionally a
line or two off?

Different compilers build their debugging information regarding
program source code in different ways. Purify uses whatever
information is provided to indicate line numbers when necessary.
You can sometimes see similar behavior in debuggers as well; it is
not a bug in Purify. Some C++ compilers tend to put wrong
line-numbers in the debugging information in the code.

What should I do if I get this message?

ld.so: text enable failed

You need to use a machine with more swap space, close down other
programs, or add additional swap space. See your system
administrator.

For the commands to add swap space, see the answer to “Why do I
get this message?” on page 13-2.

Why do my suppression directives not work?

If an item in the suppression database has a call chain with more
function names in it than are recorded in the reports it is
comparing against, an exact match is not possible. In such cases,
the reports are not suppressed and a warning is issued for the first
such instance.

You can control the number of functions in a call chain reported by
Purify with the option -chain-length . Set this option to a larger
number to ensure your suppressions are recognized.

Can I use my own malloc, or does Purify have its own?

You can use your own malloc . Purify intercepts calls to malloc but
does not implement them. Your malloc package must implement
Common Questions 13-7

the standard malloc interface. See Chapter 8, “Setting
Watchpoints,” for more information.

How do I get a timestamp/user-name/etc. into the log file?

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/time.h>

#include <sys/param.h>

#include "purify.h"

int

main(int argc, char **argv)

{

/* Add environment information to Purify logfile. */

if (purify_is_running()) {

 int i;

 time_t now;

 char cwd[MAXPATHLEN];

 char *user;

 /* Print timestamp. */

 time(&now);

 purify_printf("Run at: %s", ctime(&now)); /* ctime adds '\n' */

 /* Print user name. */

 user = getenv("USER");

 purify_printf("Run by: %s (%d)\n",

 user? user : "<$USER not set>",

 getuid());

 /* Print working directory */

#ifdef SUNOS4

 if (getwd(cwd) != NULL)

#else

 if (getcwd(cwd, sizeof(cwd)) != NULL)

#endif

 {

purify_printf("Current directory: %s\n", cwd);

 }

}

...

}

Call purify_printf
to include timestamp
and user information
13-8 Purify User’s Guide

General questions

Why does this program show the UMR error on line 6
instead of line 5?

1 int main {}
2 int worse = 0;
3 int bad;
4
5 worse = bad;
6 worse++;
7 exit(0);
8 }

The variable bad is uninitialized. The uninitialized random value
is copied from bad to worse . Then worse , which now contains the
random uninitialized value, is incremented. Purify reports that
uninitialized memory is used on line 6, but by default does not
report that it is copied on line 5.

Many programs copy uninitialized values, but do not use them. An
example is a program that uses bcopy to copy structures that
contain padding due to data alignment restrictions. Since the
program does not use these values it is not in error. Only when an
uninitialized value is used in a computation or passed to a
function does Purify signal that an error has occurred. For more
details, see “A UMR example” on page 3-11.

Why does the leak show up on a line that seems unrelated
to the memory block when I step through my program
calling purify_new_leaks?

A leak occurs when the last reference to the memory is
overwritten. After your program is done with a pointer, it is not
always immediately overwritten. The pointer variable can be
“dead” with respect to your source code, while the memory location
or register containing it stays around for a while. This is why
purify_new_leaks sometimes shows a leak occurring a few lines
after the pointer variable becomes ‘dead’. Of course, this does not
affect the malloc location listed in the Purify report.
Common Questions 13-9

Does Purify detect array bounds errors for static and stack
variables?

Purify now detects array bounds read and write errors on
variables in statically-allocated memory. On SPARC systems,
Purify also detects accesses across stack frames. See page 10-26
and page 10-27 for details on the SBR and SBW messages.

Does Purify support shared libraries?

Yes, including the use of dlopen on SunOS 4.1, Solaris 2, and IRIX,
and shl_load on HP-UX. If you dynamically open a library that
Purify has not seen before, or if you delete a cached Purify’d
shared library, Purify will build it, if required at run-time.

Does Purify work with shared memory?

Yes.

What does “below the frame pointer” mean?

Automatic local variables in a function are stored on the stack,
which also contains space to store register values and other
function instance data. On the SPARC architecture, in most
functions, two registers point to the top and bottom of the stack
frame, or section of the stack used to hold that function's data.
These are the frame pointer which points to the high-address end
of the stack frame, and the stack pointer which points to the
low-address end of the stack frame.

Where suitable symbolic data is available, Purify translates
addresses on the stack into local variable names. However, if
debugging data is not available, Purify will tell you the offset
below the frame pointer, or above the stack pointer where an
address lies.

Typically, local variables are allocated at addresses below the
frame pointer, with the first named variable in the function at the
highest address, and so on. If the code has been optimized, some
local variables will be in registers and not on the stack. The
13-10 Purify User’s Guide

distance below the frame pointer might give some hint as to which
variable is being referenced.

Registers can be spilled into a special section at the bottom 64
bytes of the stack frame, typically by the operating system. If you
see references to addresses in this region, it's typically due to a
wild pointer happening to point to such a region.

The stack grows downwards on the SPARC architecture, so as one
function calls the next, the caller stack pointer becomes the called
frame pointer, and the stack pointer is set to a new lower address.

Why does my application run fine without Purify but core
dump when I use Purify? I get this message:

Purify (cor): Received signal 11 SIGSEGV (segmentation
violation):

Purify tends to magnify the existence of a fatal problem and as a
result core dumps. Although the application doesn’t normally core
dump, this type of problem is very likely to core dump in the field,
on a different system, or even sporadically on the current system.

In most cases the core dump is a result of a fatal error detected by
Purify, for example NPR, NPW, ZPR, ZPW. The fatal error is usually
reported just before the core message. Fixing this fatal error will
fix the core dump.

When using Purify, I get this message:

Purifying: libgcc.a execlp("ar", ...) failure in
add_symbol_table: No such file or directory.

This error occurs if you are using the GNU binutils version of ar

because it doesn't put the symbol table in the library. To avoid this
error use /usr/ccs/bin/ar . Specify /usr/ccs/bin as the first entry
of the PATH variable. If you need to use the GNU version of ar , run
binutils’ ranlib on the library.

Solaris
Common Questions 13-11

What are those funny function names like ‘ReAd’ and
‘MaLlOc’?

Purify intercepts a number of functions like read and malloc . It
changes the name of real definitions to be mixed-case, and
provides wrapper definitions with the normal names, that do the
checking and then call the real definitions.

What is the .pure file? Is it safe to remove it?

Purify uses the .pure file as part of its file-locking mechanism
when creating Purify’d object files and libraries. The file will be
created as needed, so you can safely delete it. However, since the
file is zero-length, it does not impact disk space.
13-12 Purify User’s Guide

Purify 4.0 Quick Reference
Using the Purify Viewer
To build a Purify’d program: % purify cc -g <filename>.o
Purify opens the Viewer by default when you run a Purify’d program: % a.out
To also open a saved view file (.pv file) in a Viewer:
% setenv PURIFYOPTIONS ’-view-file=./%v.pv’; a.out; purify -view ./a.out.pv

Running a make-run-debug-edit cycle
You can run an entire debugging cycle from the Viewer using the program controls: start a make, run an executable, or launch
the debugger or editor.

Keyboard accelerators

Key Action Menu equivalent

Control-n, or Down arrow Move to the next message in the outline hierarchy Next in the Actions menu

Control-p, or Up arrow Move to the previous message in the outline hierarchy Previous in the Actions menu

Return Expand the selected message Expand in the Actions menu

DEL Collapse the selected message Collapse in the Actions menu

Space Expand if selected message is currently collapsed; Collapse if selected message is expanded

Next Previous Expand Collapse Edit Suppress Explain PureCoverage

Click to expand or
collapse a message

Click to open an editor

Source code insert showing
exact location of the error

To display, select Toolbar
from the View menu

To display, select Program controls
from the View menu

PureDDTSNew Leaks

Purify 4.0 Quick Reference
Purify messages

* Message severity: F=Fatal, C=Corrupting, W=Warning, I=Informational

Suppressing messages

Message Description Severity* Message Description Severity*

ABR Array Bounds Read W NPR Null Pointer Read F

ABW Array Bounds Write C NPW Null Pointer Write F

BRK Misuse of Brk or Sbrk C PAR Bad Parameter W

BSR Beyond Stack Read W PLK Potential Leak W

BSW Beyond Stack Write W SBR Stack Array Bounds Read W

COR Core Dump Imminent F SBW Stack Array Bounds Write C

FIU File Descriptors In Use I SIG Signal I

FMM Freeing Mismatched Memory C SOF Stack Overflow W

FMR Free Memory Read W UMC Uninitialized Memory Copy W

FMW Free Memory Write C UMR Uninitialized Memory Read W

FNH Freeing Non Heap Memory C WPF Watchpoint Free I

FUM Freeing Unallocated Memory C WPM Watchpoint Malloc I

IPR Invalid Pointer Read F WPN Watchpoint Entry I

IPW Invalid Pointer Write F WPR Watchpoint Read I

MAF Malloc Failure I WPW Watchpoint Write I

MIU Memory In-Use I WPX Watchpoint Exit I

MLK Memory Leak W ZPR Zero Page Read F

MRE Malloc Reentrancy Error C ZPW Zero Page Write F

MSE Memory Segment Error W

Message suppression using a . purify file

Suppressing messages from the Viewer: Click the message, then select Suppress from the Options menu. This suppresses
messages for the current session. To make the suppression permanent, click Make permanent or add the directive shown at the
bottom of the suppression dialog to a .purify file in one of these standard directories:
■ The program directory, to suppress messages from programs in that directory
■ Your home directory, to suppress messages from all programs that you run
■ The <purifyhome> directory, to suppress messages from all programs run by all users at your site

You can also use the -suppression-filenames option to specify the filenames of your choice.

Message suppression directive syntax and examples

Suppression syntax in a .purify file: suppress <message-type> <function-call-chain>
For <message-type> , specify the acronym for the message to be suppressed, wildcard “*” is permitted.
For <function-call-chain> , specify a semi-colon delimited chain of call-site specifications each of which may be either a
function name or a filename (enclosed in double quotes). Wildcards “*” and “?” are permitted. “...” matches any series of functions.

For example:
■ To suppress UMRs from the function sqrt add: suppress umr sqrt
■ To suppress ABRs in any method of class color with prefix test add: suppress abr color::test*
■ To suppress all messages from the static and shared versions of libc add: suppress * "libc*"
■ To suppress array bounds messages in all functions called from main add: suppress ab* ...; main

Purify 4.0 Quick Reference

API functions
Include <purifyhome>/purify.h in your code and always link with <purifyhome>/purify_stubs.a
Useful compile/link options include: -I`purify -print-home-dir` -L`purify -print-home-dir`

Build-time options
Set build-time options on the link line to build Purify’d programs:
% purify -cache-dir=$HOME/cache -always-use-cache-dir cc ...

Using Purify with other Pure Software products

Commonly used functions Description

int purify_describe (char *addr) Prints specific details about memory

int purify_is_running (void) Returns "TRUE" if the program is Purify’d

int purify_new_inuse (void) Prints a message on all memory newly in use

int purify_new_leaks (void) Prints a message on all new leaks

int purify_new_fds_inuse (void) Lists the new open file descriptors

int purify_printf (char *format, ...) Prints formatted text to the Viewer/log-file

int purify_watch (char *addr) Watches for memory write, malloc , free

int purify_watch_n (char *addr, int size, char *type) Watches memory: type = "r ", "w", "rw "

int purify_watch_info (void) Lists active watchpoints

int purify_watch_remove (int watchno) Removes a specified watchpoint

int purify_what_colors (char *addr, int size) Prints color coding of memory

Commonly used build-time options Default

-always-use-cache-dir no

Forces all Purify’d object files to be written to the global cache directory

-cache-dir <purifyhome>/cache

Specifies the global directory where Purify caches instrumented object files

-collector not set

Specifies the collect program to handle static constructors (for use with gcc , g++)

-ignore-runtime-environment no

Prevents the run-time Purify environment from overriding the option values used in building the program

-linker system-dependent

Sets the alternative linker to build the executables instead of the system default

-print-home-dir

Prints the name of the directory where Purify is installed, then exits

Product Command line syntax

PureCoverage % purify <purifyoptions> purecov <purecovoptions> cc ...

PureLink % purelink <purelinkoptions> purify <purifyoptions> cc ...

Quantify Cannot instrument for Purify and Quantify simultaneously

Purify 4.0 Quick Reference
Run-time options
Set run-time options using the PURIFYOPTIONS environment variable:
% setenv PURIFYOPTIONS "-log-file=mylog.%v.%p ‘printenv PURIFYOPTIONS‘"

† Can use conversion characters listed below.

Conversion characters for filenames
Use these conversion characters when specifying filenames for options such as -log-file and -view-file .

Commonly used run-time options Default
-auto-mount-prefix /tmp_mnt

Removes the prefix used by file system auto-mounters

-chain-length 6

Sets the maximum number of stack frames to print in a report

-fds-in-use-at-exit yes

Specifies that the file descriptor in use message be displayed at program exit

-follow-child-processes no

Controls whether Purify monitors child processes in a Purify’d program

-jit-debug not set

Enables just-in-time debugging

-leaks-at-exit yes

Reports all leaked memory at program exit

-log-file † stderr

Writes Purify output to a log file instead of the Viewer window

-messages first

Controls display of repeated messages: "first" , "all" or in a "batch" at program exit

-program-name argv[0]

Specifies the full pathname of the Purify’d program if argv[0] contains an undesirable or incorrect value

-show-directory no

Shows the directory path for each file in the call chain, if the information is available

-show-pc no

Shows the full pc value in each frame of the call chain

-show-pc-offset no

Appends a pc-offset to each function name in the call chain

-view-file † not set

Saves Purify output to a view file (.pv file) instead of the Viewer. To examine a view file, use purify -view <filename>.pv

-user-path not set

Specifies a list of directories in which to search for programs and source code

-windows not set

Redirects Purify output to stderr instead of the Viewer if -windows=no

Character Converts to

%V Full pathname of program with “/” replaced by “ _”

%v Program name

%p Process id (pid)

qualified filenames (./%v.pv) Absolute or relative to current working directory

unqualified filenames (no ‘/’) Directory containing the program

P U R I F Y U S E R ’ S G U I D E
Index
Symbols
"..." syntax 7-4
#ifdef 9-4
%c 12-9
%d 12-9
%E 6-14
%e 6-14, 12-9
%f 12-9
%g 12-9
%L 6-14
%l 6-14
%n 12-9
%p 6-14, 11-2
%s 12-9
%u 12-9
%V 6-14, 11-2
%v 6-14, 11-2
%x 6-14
%z 6-14
*

in filenames 11-2
in suppressions 7-4

A
ABR, array bounds read 10-3

correcting 2-9
example 2-6

ABW, array bounds write 10-4
example 3-14

allocators
fixed sized 9-1
See also pool allocators

-always-use-cache-dir 12-6
annotation

adding to Purify output 6-7
API functions 12-9
options 12-9

API functions
annotation 12-9
calling 1-6
calling from a debugger 11-7
support@pure.com
calling from a program 11-8
exit processing 12-11
file descriptor 12-12
memory access 12-15
memory leaks 12-17
message batching 12-20
miscellaneous 12-33
pool allocation 12-23
quick reference 12-4
stubs library 11-8
threads 12-28
watchpoints 12-29

API functions (by name)
purify_all_fds_inuse 5-4, 12-12
purify_all_inuse 12-17
purify_all_leaks 12-17
purify_all_messages 12-20
purify_assert_is_readable 12-15
purify_clear_fds_inuse 5-4, 12-12
purify_clear_inuse 12-17
purify_clear_leaks 12-17
purify_clear_messages 12-20
purify_describe 11-7, 12-15
purify_exit 6-13, 12-11
purify_get_pool_id 12-23
purify_get_user_data 9-8, 12-23
purify_is_running 9-4, 12-33
purify_logfile_printf 6-10, 12-9
purify_map_pool 12-23
purify_map_pool_id 12-23
purify_new_fds_inuse 12-12
purify_new_inuse 12-17
purify_new_leaks 1-6, 4-8, 12-17
purify_new_messages 12-20
purify_printf 12-9
purify_printf_with_call_chain

6-8, 12-9
purify_pure_name_thread 12-28
purify_set_pool_id 12-23
purify_set_user_data 9-8, 12-23
purify_start_batch 12-20
purify_stop_batch 12-20
Index-1

Index-2
purify_stop_here 3-9, 11-7, 12-33
purify_stop_here_internal 12-33
purify_watch 8-3, 12-29
purify_watch_ 12-29
purify_watch_info 8-3, 12-30
purify_watch_n 8-3, 12-30
purify_watch_r 12-29
purify_watch_remove 8-3, 12-30
purify_watch_remove_all 8-3,

8-6, 12-30
purify_watch_rw 12-30
purify_watch_w_ 12-29
purify_what_colors 12-15

-append-logfile 12-21
ASCII output 6-2
-auto-mount-prefix 12-6
auxiliary data accessing 9-8

B
batching messages 6-9
blue memory color 3-3
breakpoints, setting 4-7
BRK, misuse of brk or sbrk 10-5
BSR, beyond stack read 10-6
BSW, beyond stack write 10-7
building Purify’d programs 1-3, 2-3,

13-1
build-time options 12-1, 12-6

C
C++

suppressing messages 7-5
-cache-dir 12-6
caching

directory 12-6
directory, full 13-2
object file, managing 6-19
of dynamic shared objects 2-3
options 12-6

call chain
displaying pathnames in 6-9
in Purify messages 1-4

-chain-length 12-18
child

See -follow-child-processes
code

See source code
-collector 12-7
color
changing colors in viewer 6-15
color coding messages 6-15
See also memory color

compiling and linking 2-3
configuration message 2-5
conversion characters

in shell scripts 6-14
printf 12-9
using in filenames 11-2

-copy-fd-output-to-logfile 6-8, 12-9
COR, core dump imminent 10-8
corrupting error 10-2
cron job

using 6-20
customizing

messages 1-5, 6-9
program controls 6-17
scripts 6-16
viewer 6-15

D
dangling pointers

accessing through 1-9
data

accessing auxiliary 9-8
dbx

calling Purify functions 11-7
debugging with 3-9

debuggers
calling Purify functions from 1-6,

11-7
dbx 3-9
debug program control 6-18
See also JIT debugging
setting breakpoints 3-9, 4-7
stopping at watchpoints 8-4
using with Purify 1-5, 3-9
xdb 4-7

debugging 13-7
-g option 2-3
-jit-debug 12-31
symbolic information 13-7
testHash 3-9

directives
static checking 12-24, 12-25
unsuppress 7-7, 7-8

directory
purifyhome/cache 12-6
support@pure.com

disk management
swap space 13-7

dynamic shared objects caching 2-3

E
editing source code 2-9, 2-12
editor

changing using .Xdefaults
file 6-15

edit program control 6-18
opening from viewer 2-9, 2-12

environment variables
PUREOPTIONS 11-4
PURIFYOPTIONS 11-4

errors
See messages and messages (by

name)
exit

calling purify_exit 6-13
reporting status 6-13
status message 2-14

exit processing
API functions 12-11
options 12-10

-exit-status 12-10

F
fatal error 10-2
-fds 12-12
-fds-inuse-at-exit 5-4
file descriptors

analyzing message 5-4
API functions 12-12
dup 5-2
dup2 5-2
inherited 5-1
ioctls 5-2
leak example 5-3
message 2-10
options 12-12
pipe 5-1
poll 5-2
reserved for Purify 2-10, 5-2
select 5-2
socketpair 5-1
stderr 5-1
stdin 5-1
stdout 5-1
support@pure.com
filenames
using conversion characters

in 11-2
files

libpurify_stubs.a 11-8
.purify, suppression directives

in 7-10
purify_stubs.a 9-4
purify.h 9-4, 11-8
removing old 6-19
See also log file
See also view file
system error 13-6
watchpoints 8-6, 12-29

FIU, file descriptors in use 10-9
disabling 5-4

fixed sized allocators 9-1
FMM, freeing mismatched

memory 10-10
FMR, free memory read 3-17, 10-11,

12-14
FMW, free memory write 3-17,

10-12, 12-14
FNH, freeing non-heap

memory 3-21, 10-13
-follow-child-processes 12-31
fonts, changing size and color 6-15
-forbidden-directories 12-6
-force-rebuild 12-6, 12-24
fork

See -follow-child-processes
frame pointer 13-10
freed memory

reading or writing 3-17
-free-queue-length 12-14
-free-queue-threshold 12-14
-freeze-on-error 12-31
FUM, freeing unallocated

memory 3-21, 10-14
functions

See API functions

G
-g debugging option

compiling and linking with 2-3
using to get source code line

numbers 2-7
-g++ 12-7
gdb 8-2

calling Purify functions 11-7
Index-3

Index-4
green memory color 3-3
guard zones

around static and dynamic
memory 1-9

-static-checking-guardzone 12-24

H
-handle-signals 10-8, 10-28, 12-32
harness

See test harness
heap analysis

in message 2-13
Hello World example

hello_world.c 2-2
locating error 2-8
memory access error 2-6
suppressing messages in 7-6

-help 12-8
help

technical xiv
using online Help xii

hiding messages
See suppressing messages

I
-ignore-runtime-environment 6-6,

11-6, 12-8, 12-13
-ignore-signals 10-8, 10-28, 12-32
informational message 10-2
installing Purify xiii
instrumenting programs 1-3, 2-3
-inuse-at-exit 12-16
IPR, invalid pointer read 10-15
IPW, invalid pointer write 10-16
IRIX

compile/link command 2-3
running a Purify’d program 2-4

J
JIT debugging 1-5
-jit-debug 12-31
just-in-time debugging

See JIT debugging

K
keyboard accelerators

See Purify Quick Reference
kill program control 6-18

L
leaks

See memory leaks
-leaks-at-exit 4-11, 12-16
libpurify_stubs.a 11-8
libpurify_stubs.so 11-8
library

ignoring 13-1
purify_stubs.a 9-4
See also stubs library
shared 13-10

lightweight processes
See threads

line numbers
-g option 2-3, 2-7
on IRIX 2-7

link line
using purify on 2-3

-linker 12-7
linker

/bin/ld 13-2
errors 13-3
options 12-7
ranlib 13-2

local variable names
displaying 2-3

log file
saving output to 6-2

M
MAF, malloc failure 10-17
mail mode options 12-13

-ignore-runtime-environment
12-21

-mail-to-user 12-13
mailing Purify reports

mail mode options 12-13
-mail-to-user 6-6
using -ignore-runtime-environ-

ment also 6-6
-mail-to-user 6-6, 11-6, 12-13
make program control 6-17
makefiles

using Purify in 1-6
malloc 4-3

failure 13-2
improved mallocs 9-1
support@pure.com

veneers 9-1
wrapper 13-7

-max-threads 12-27
memory

color states 3-2
reading or writing freed 3-17
red 3-3
shared 13-10
uninitialized reads 1-10

memory access
API functions 12-15
options 12-14

memory access errors
Hello World example 2-6
how Purify finds 3-2
importance of finding 1-9
Purify limitations 3-5

memory in use message 2-13
memory leaks 1-6

API functions 12-17
definition 2-13, 4-3
disabling message 4-11
heap analysis 2-13
Hello World example 2-11
how reported 4-1
in testHash 4-4
locating the source 4-6
malloc 4-3
message 2-11, 4-2
new leaks button 2-11, 4-10
omitting exit 13-6
options 12-16
potential 2-13, 4-3
Purify limitations 4-3
purify_new_leaks 1-6, 4-8

memory managers
auxiliary data 9-8
fixed size allocators 9-1
improved malloc 9-1
malloc veneer 9-1
modifying fixed-sized

allocators 9-3
modifying pool allocators 9-5
modifying sbrk allocators 9-7
pool allocators 9-2
Purify limitations 4-3
sbrk allocators 9-2
using purify_is_running 9-4

message batching
API functions 12-20
options 12-19
support@pure.com
-messages 6-9, 12-19
messages

batching 6-9
batching options 12-19
color coding 6-15
customizing 1-5, 6-9
displaying suppressed 7-6
first-only mode 6-9
mailing to users 6-6
memory leaks 4-2
options for controlling

appearance 12-18
overriding suppressions 7-7, 7-8
repeated errors 6-9
severity 10-2
startup banner 2-5
suppressing 1-5

messages (by name)
ABR, array bounds read 10-3
ABW, array bounds write 10-4
BRK, misuse of brk or sbrk 10-5
COR, core dump imminent 10-8
FIU, file descriptors in use 10-9
FMM, freeing mismatched

memory 10-10
FMR, free memory read 3-17,

10-11, 12-14
FMW, free memory write 3-17,

10-12, 12-14
FNH, freeing non-heap

memory 3-21, 10-13
FUM, freeing unallocated

memory 3-21, 10-14
IPR, invalid pointer read 10-15
IPW, invalid pointer write 10-16
MAF, malloc failure 10-17
MIU, memory in-use 10-18
MLK, memory leak 2-12, 4-3,

10-19
MRE, malloc reentrancy

error 10-20
MSE, memory segment

error 10-21
NPR, null pointer read 10-22
NPW, null pointer write 10-23
PAR, bad parameter 10-24
PLK, potential memory leak 4-3,

10-25, 12-16
SBR, stack array bounds

read 10-26
Index-5

Index-6
SBW, stack array bounds
write 10-27

SIG, signal 10-28
SOF, stack overflow 10-29
UMC, uninitialized memory

copy 10-30
UMR, uninitialized memory

read 10-31
WPF, watchpoint free 8-1, 10-32
WPM, watchpoint malloc 10-33
WPN, watchpoint entry 10-34
WPR, watchpoint read 8-1, 10-35
WPW, watchpoint write 8-1,

10-36
WPX, watchpoint exit 8-1, 10-37
ZPR, zero page read 10-38
ZPW, zero page write 10-39

miscellaneous options 12-31
MIU, memory in-use 10-18
MLK, memory leak 2-12, 4-3, 10-19
MRE, malloc reentrancy error 10-20
MSE, memory segment error 10-21

N
new leaks button 4-10
new memory leaks summary 2-11,

4-10
non-heap memory, freeing 3-21
NPR, null pointer read 10-22
NPW, null pointer write 10-23

O
object code insertion 1-3
object files

caching 6-19
removing old 6-19

options
annotation 12-9
build-time 12-1, 12-6
caching 12-6
dialog 11-4
environment variable 11-4
exit processing 12-10
file descriptor 12-12
link line 11-5
linker 12-7
mail mode 12-13
memory access 12-14
memory leak 12-16
message appearance 12-18
message batching 12-19
miscellaneous 12-31
output mode 12-21
processing 11-4
protecting run-time option

settings 6-6
reference 12-1
run-time 12-2
setting 11-2, 12-4
setting site-wide 11-4
signal 12-32
static checking 12-24
suppression 12-26
syntax 11-2
types 11-3
watchpoint 12-29

options (by name)
-always-use-cache-dir 12-6
-append-logfile 12-21
-auto-mount-prefix 12-6
-cache-dir 12-6
-chain-length 12-18
-collector 12-7
-copy-fd-output-to-logfile 12-9
-exit-status 12-10
-fds 12-12
-fds-inuse-at-exit 5-4
-follow-child-processes 12-31
-forbidden-directories 12-6
-force-rebuild 12-6, 12-24
-free-queue-length 12-14
-free-queue-threshold 12-14
-freeze-on-error 12-31
-g++ 12-7
-handle-signals 12-32
-help 12-8
-ignore-runtime-environment

12-8, 12-13
-ignore-signals 12-32
-inuse-at-exit 12-16
-jit-debug 12-31
-leaks-at-exit 4-11, 12-16
-linker 12-7
-mail-to-user 6-6, 12-13
-max-threads 12-27
-messages 12-19
-output-limit 12-22
-pointer-offset 12-16
-print-home-dir 12-8
-program-name 12-8
support@pure.com

-run-at-exit 12-10
-search-mmap 12-16
-show-directory 12-18
-show-pc 12-18
-show-pc-offset 12-18
-static-checking 12-24
-static-checking-default 12-25
-static-checking-guardzone 12-24
-suppression-filenames 12-26
-thread-report-at-exit 12-27
-threads 12-27
-thread-stack-change 12-27
-usage 12-8
-user-path 12-22
-version 12-8
-view 12-21
-view-file 12-22
-watchpoints-file 8-6, 12-29
-windows 12-21

output
ASCII text 6-2
controlling 6-2
options 12-21
redirecting to a file 6-2
view file 6-4

-output-limit 12-22

P
PAR, bad parameter 10-24
path

using conversion characters
in 11-2

PLK, potential memory leak 4-3,
10-25, 12-16

-pointer-mask
options (by name)

-pointer-mask 12-16
-pointer-offset 12-16
pointers

dangling 1-9
pool allocators

API functions 12-23
auxiliary data 9-8
modifying 9-5
support for 9-2

potential memory leak 2-13
prestarting the viewer 6-5
printf 12-9
-print-home-dir 12-8
process id conversion character 11-2
support@pure.com
program controls
customizing 6-17
displaying 2-5

program name conversion
character 11-2

-program-name 12-8
pure_debug 6-16
pure_edit 6-16
pure_invoke_ddts 6-16
pure_invoke_purecov 6-16
pure_jit_debug 6-16
pure_print 6-16
pure_run 6-16
PureCoverage, using with

Purify 1-7
PureDDTS, using with Purify 1-8
PureLink, using with Purify 1-8
PUREOPTIONS 11-4, 11-5
PureTestExpert, using with

Purify 1-8
Purify

building programs 13-1
controlling output 6-2
malloc 4-3, 13-7
PureCoverage, and 1-7
PureDDTS, and 1-8
PureLink, and 1-8
PureTestExpert, and 1-8
status on program exit 6-13
when to use 1-2

purify
what_colors 11-7

Purify API functions, See API func-
tions

.purify files
suppressing messages in 7-4
system default 12-26

Purify’d program, running 2-4
purify.h 9-4
PURIFYOPTIONS 11-4

R
reads

uninitialized 1-10
red

memory color 3-3
zones 3-3

redirection syntax, shell file 6-2
release notes, locating xiii
removing old files 6-19
Index-7

Index-8
repeated error messages 6-9
run program control 6-18
-run-at-exit 12-10
running a Purify’d program 2-4
running shell scripts at exit 6-14
run-time options 12-2

protecting setttings 6-6

S
SBR, stack array bounds read 10-26
sbrk allocators

modifying 9-7
support for 9-2

SBW, stack array bounds
write 10-27

scripts
customizing 6-16
remove_old_files 6-19
using conversion characters

in 6-14
using Purify in 1-6

scripts (by name)
pure_debug 6-16
pure_edit 6-16
pure_invoke_ddts 6-16
pure_invoke_purecov 6-16
pure_jit_debug 6-16
pure_print 6-16
pure_run 6-16

-search-mmap 12-16
shared libraries 13-10
shared memory 13-10
shell file redirection syntax 6-2
shl_load 13-10
-show-directory 12-18
-show-pc 12-18
-show-pc-offset 12-18
SIG, signal 10-28
signal handling 12-32
SOF, stack overflow 10-29
source code

changing number of lines
displayed 6-15

displaying filenames 2-3, 2-7
editing from Viewer 2-9, 2-12
line numbers 2-7

stack
BSR, beyond stack read 10-6
BSW, beyond stack write 10-7

stack frame 13-10
stack pointer 13-10
startup banner 2-5
static checking

directives 12-24, 12-25
options 12-24

statically allocated memory, how
Purify checks 3-4

-static-checking 12-24
-static-checking-default 12-25
-static-checking-guardzone 12-24
status at exit, reporting 6-13
stubs library

linking with 11-8
suppessing messsages

in .purify file 7-4
support, technical xiv
suppressed messages

displaying 7-6
suppressing messages 1-5

from viewer 7-2
in C++ code 7-5

-suppression-filenames 12-26
suppressions

dialog 7-2
directives

modifying in Viewer 7-7
incorrect matches 13-7
options 12-26
precedence 7-9
sharing suppressions 7-9
unsuppress directive 7-8

swap space
required at build time 13-1
required at run time 13-5
running out 13-2

syntax
in .purify file 7-4
options 11-2
shell file redirection 6-2

T
technical support xiv
test harness

using Purify in 1-6
testHash example

location 3-6
third-party code and libraries 1-11
-thread-report-at-exit 12-27
-threads 12-27
support@pure.com

threads 6-10
API functions 12-28
errors in threaded programs 1-10
how Purify identifies 6-11

-thread-stack-change 6-11, 12-27
tracking errors 3-9

U
UMC, uninitialized memory

copy 10-30
UMR, uninitialized memory

read 3-11, 10-31, 13-6, 13-9
example 3-11
importance of finding 1-10

unallocated memory, freeing 3-21
unsuppress directive 7-7, 7-8
-usage 12-8
-user-path 12-22

V
variable

automatic local 13-10
-version 12-8
-view 12-21
view file

creating 6-4
defined 6-3
opening 6-4
saving a run to 6-3

viewer
customizing 6-15
prestarting 6-5
using 2-5

-view-file 12-22

W
warning message 10-2
watchpoints

allocations 8-1
API functions 12-29
entry 8-1
examples 8-4
exit 8-1
files 8-6
free 8-1
kernal trap handlers 8-7
malloc 8-1
options 12-29
support@pure.com
reads 8-1
saving 8-6
setting 8-3
stop automatic saving 8-6
stopping at in debugger 8-4
system calls 8-7
writes 8-1

-watchpoints-file 8-6, 12-29
wildcards

in filenames 11-2
in suppressions 7-4

-windows 6-4, 12-21
WPF, watchpoint free 8-1, 10-32
WPM, watchpoint malloc 8-1, 10-33
WPN, watchpoint entry 8-1, 10-34
WPR, watchpoint read 8-1, 10-35
WPW, watchpoint write 8-1, 10-36
WPX, watchpoint exit 8-1, 10-37

X
X display

running Purify’d program
without 2-1

xdb
debugging with 3-10, 4-7

Xdefaults file
editing 6-15

Y
yellow memory color 3-3

Z
ZPR, zero page read 10-38
ZPW, zero page write 10-39
Index-9

Index-10
 support@pure.com

	Title Page
	Notice
	Contents
	Welcome to Purify
	Getting started
	Mastering the basics
	Learning to use special features
	Using the reference chapters
	Using online Help
	Conventions used in this guide
	Displaying the release notes
	Installing Purify
	Contacting technical support

	1: Introducing Purify
	When to use Purify
	Starting to use Purify
	Getting the most out of Purify
	Customizing Purify
	Using your debugger with Purify
	Calling Purify’s API functions
	Integrating Purify into makefiles and scripts

	Using Purify with other Pure Software products
	Using Purify with PureCoverage
	Using PureLink with Purify and PureCoverage
	Using Purify with PureDDTS
	Using Purify with PureTestExpert

	Checking for memory errors
	Memory access errors
	Accessing through dangling pointers
	Uninitialized memory reads
	Memory allocation errors
	Memory leaks
	Errors in third-party code and libraries

	2: Finding Errors in Hello World
	Before you start
	Building a Purify’d program
	Compiling and linking in separate stages

	Running a Purify’d program
	Using the Purify Viewer
	Analyzing an ABR message
	Using line numbers and source filenames
	Finding the exact location of the error
	Correcting the ABR error

	Looking at the file descriptors message
	Understanding the memory leaked summary
	Looking at the MLK error
	Looking at the heap analysis

	Looking at the exit status summary
	Rerunning a Purify’d program

	3: Memory Access Errors
	How Purify finds memory access errors
	How Purify checks statically allocated memory
	Notes and limitations

	Building the testHash example program
	Running the testHash program without Purify
	Running the Purify’d testHash program
	Debugging the testHash program
	Debugging with dbx
	Debugging with xdb

	Reading uninitialized memory
	A UMR example
	Finding the cause of the UMR error
	Correcting the UMR error

	Reading and writing beyond the bounds of an array
	An ABW example
	Finding the cause of the ABW error
	Correcting the ABW error
	An ABR example

	Reading or writing freed memory
	An FMR example
	Finding the cause of the FMR error
	Correcting the FMR error

	Freeing unallocated or non-heap memory
	An FNH example
	Finding the cause of the FNH error
	Correcting the FNH error

	4: Memory Leaks
	How Purify reports memory leaks
	Notes and limitations

	Finding the memory leaks in testHash
	Finding the source of memory leaks
	Using your debugger to set breakpoints
	Running purify_new_leaks

	Correcting the error
	Using the new leaks button
	Disabling memory leaked messages

	5: Analyzing File Descriptors
	File descriptors in use messages
	File descriptor leak example
	Analyzing FIU messages
	Disabling FIU messages
	Notes and limitations

	6: Customizing Purify
	Controlling Purify output
	Saving Purify output as ASCII text
	Using shell file redirection syntax
	Creating a log file automatically

	Saving Purify output to a view file
	Saving a run to a view file from the Viewer
	Creating a view file automatically
	Opening a view file

	Prestarting the Viewer

	Mailing Purify output to developers
	Using the -mail-to-user-option
	Protecting your run-time option settings

	Annotating Purify’s output
	Customizing Purify messages
	Controlling the content and appearance of messages...
	Controlling message batching
	Customizing the thread summary message
	How Purify identifies threads

	Enabling JIT debugging
	Reporting Purify status at exit
	Running shell scripts at exit
	Customizing the Purify Viewer
	Customizing Purify scripts
	Customizing the program controls

	Managing cached object files
	Deleting cached object files
	Using the pure_remove_old_files script
	Using a cron job

	7: Suppressing Purify Messages
	Suppressing messages in the Viewer
	Selecting where to suppress a message
	Making a suppression permanent
	Saving a suppression directive to another .purify ...

	Specifying suppressions in a .purify file
	Using "..." syntax
	Suppressing error messages in C++ code
	Suppressing messages in the Hello World example

	Displaying suppressed messages
	Removing and editing suppressions
	Temporarily unsuppressing messages
	Using the unsuppress directive

	Sharing suppressions between programs
	Suppression precedence
	Creating suppressions for specific operating syste...
	Using the -suppression-filenames option

	8: Setting Watchpoints
	When to use watchpoints
	Why use Purify’s watchpoints?
	Calling Purify watchpoint functions
	Stopping at watchpoints in a debugger

	A watchpoint example
	Saving watchpoints
	Notes and limitations

	9: Custom Memory Managers
	Types of custom memory managers
	Modifying fixed-size allocators
	Using purify_is_running instead of #ifdef
	Modifying pool allocators
	Modifying sbrk allocators
	Accessing auxiliary data
	Auxiliary data example

	10: Purify Messages Reference
	Message quick reference
	Message severity
	Message descriptions
	ABR Array Bounds Read
	ABW Array Bounds Write
	BRK Misuse of Brk or Sbrk
	BSR Beyond Stack Read
	BSW Beyond Stack Write
	COR Core Dump Imminent
	FIU File Descriptors in Use
	FMM Freeing Mismatched Memory
	FMR Free Memory Read
	FMW Free Memory Write
	FNH Freeing Non Heap Memory
	FUM Freeing Unallocated Memory
	IPR Invalid Pointer Read
	IPW Invalid Pointer Write
	MAF Malloc Failure
	MIU Memory In-Use
	MLK Memory Leak
	MRE Malloc Reentrancy Error
	MSE Memory Segment Error
	NPR Null Pointer Read
	NPW Null Pointer Write
	PAR Bad Parameter
	PLK Potential Memory Leak
	SBR Stack Array Bounds Read
	SBW Stack Array Bounds Write
	SIG Signal
	SOF Stack Overflow
	UMC Uninitialized Memory Copy
	UMR Uninitialized Memory Read
	WPF Watchpoint Free
	WPM Watchpoint Malloc
	WPN Watchpoint Entry
	WPR Watchpoint Read
	WPW Watchpoint Write
	WPX Watchpoint Exit
	ZPR Zero Page Read
	ZPW Zero Page Write

	11: Using Purify Options and API Functions
	Using Purify options
	Purify option syntax
	Using conversion characters in filenames

	Purify option types
	Purify option processing
	Specifying options in the Purify Viewer
	Specifying options in environment variables
	Setting options for all Pure Software products
	Specifying options on the link line

	Using the -ignore-runtime-environment option

	Using Purify API functions
	Calling Purify API functions from a debugger
	Using the function purify_stop_here
	Calling Purify API functions from your program
	Linking with the Purify stubs library
	Linking with the Purify stubs library on IRIX
	Installing libpurify_stubs.so
	Linking with libpurify_stubs.so
	Linking with libpurify_stubs.a

	12: Purify Options and API Reference
	Build-time options quick reference
	Run-time options quick reference
	API functions quick reference
	Build-time options
	Annotation options
	Annotation API
	Exit processing options
	Exit processing API
	File descriptor options
	File descriptor API
	Mail mode option
	Memory access options
	Memory access API
	Memory leak options
	Memory leak API
	Message appearance options
	Message batching options
	Message batching API
	Output mode options
	Pool allocation API
	Static checking options
	Suppression options
	Threads options
	Threads API
	Watchpoint options
	Watchpoint API
	Miscellaneous options
	Miscellaneous API

	13: Common Questions
	Questions about building Purify’d programs
	Questions about running Purify’d programs
	General questions

	Quick Reference
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

