
1

How to find lots of bugs in real code with
system-specific static analysis

Dawson Engler
Stanford University

Ben Chelf, Andy Chou, Seth Hallem
Coverity

The core static bug finding intuition
Systems software has many ad-hoc restrictions:
– “acquire lock L before accessing shared variable X”
– “disabled interrupts must be re-enabled”
– Error = crashed system. How to find?

Observation: rules can be checked with a compiler
scan source for “relevant” acts check that correct– scan source for relevant acts, check that correct.

– E.g., to check “disabled interrupts must be re-enabled:” scan
for calls to disable()/enable(), check matching, not done twice

Main problem:
– compiler has machinery to check, but not knowledge
– implementor has knowledge but not machinery

System-specific static analysis:
– give implementors a framework to add easily-written, system-

specific compiler extensions

Implementation:
– Extensions dynamically linked into EDG C compiler
•• Applied down all paths (“flow sensitive”), across all procedures Applied down all paths (“flow sensitive”), across all procedures

(“interprocedural”) in input program source at compile time(“interprocedural”) in input program source at compile time..

System-specific static analysis

save(flags);
cli(); EDG compiler

– Scalable: handles millions of lines of code
– Precise: says exactly what error was
– Immediate: finds bugs without having to execute path
– Effective: 1000s of bugs in Linux, OpenBSD, Commercial

();
if(!(buf = kmalloc()))

return 0;
restore(flags);
return buf;

Linux
drivers/
raid5.c

p

int checker “did not re-
enable ints!”

DE31

A bit more detail
{ #include ”linux-includes.h” }
sm chk_interrupts {
decl { unsigned } flags;
// named patterns
pat enable = { sti(); }

| { restore_flags(flags); };

Is
enabled

disable

initial

enable

enable
pat disable = { cli(); };

// states
is_enabled: disable ==> is_disabled

| enable ==> { err("double enable"); }
;

is_disabled: enable ==> is_enabled
| disable ==> { err("double disable"); }
| end_of_path ==>
{ err("exiting w/intr disabled!"); }
; }

Is
disabled

error

disable
End-of-

path

DE32

No X after Y: do not use freed memory
sm free_checker {
state decl any_pointer v;
decl any_pointer x;

start: { kfree(v); } ==> v.freed
;

v.freed:

start

kfree(v)

v.freed:
{ v != x } || { v == x }

==> { /* do nothing */ }
| { v } ==> { err(“Use after free!”); }

;
}

v.freed

error

use(v)
/* 2.4.1: fs/proc/generic.c */
ent->data = kmalloc(…)
if(!ent->data) {

kfree(ent);
goto out;

…
out: return ent;

“In context Y, don’t do X”: blocking
Linux: if interrupts are disabled, or spin lock held, do
not call an operation that could block:
– Compute transitive closure of all

potentially blocking fn’s
– Hit disable/lock: warn of any calls

123 8 f l

clean

disable()

lock(l)

enable()
unlock(l)

– 123 errors, 8 false pos

– Heavy clustering:
» net/atm: 152 checks, 22 bugs (exp 1.9) P =3.1x10^-15
» drivers/i2o: 692 checks, 35 bugs (exp 8.8) P= 2.6x10^-10

/* drivers/net/pcmcia/wavelan_cs.c */
spin_lock_irqsave (&lp->lock, flags);/* 1889 */
switch(cmd)
...
case SIOCGIWPRIV: /* 2304 */
if(copy_to_user(wrq->u.data.pointer, …))

disable()

error

NoBlock

enable()

Block call

Slide 3

DE31 easy: had stanford freshman

only show linux bugs since we won't get sued.

this is a talk for tool builders: if you know how to build it, know how it works, so have just talked about
you writing checkers --- but most likely already written.
Dawson Engler, 9/20/2006

Slide 4

DE32 high bit: fits on a slide.

design interfaces right don't have to reason about compiler internals: don't need to know about register
allocation, aliasing, interprocedural analysis. just mark the things you care about compiler pushes them
around.
Dawson Engler, 9/20/2006

2

“X before Y”: sanitize integers before use
Security: OS must check user integers before use
Checker: Warn when unchecked integers from
untrusted sources reach trusting sinks

Syscall
param

Network
packet

copyin(&v, p, len)

– Global; simple to retarget (text file with 2 srcs&12 sinks)
– Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

array[v]
while(i < v)

…

v.clean
Use(v)

v.tainted

param p

memcpy(p, q, v)
copyin(p,q,v)
copyout(p,q,v)

ERROR

Some big, gaping security holes.
Remote exploit, no checks
/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn_ctrl cmd;
...
while ((skb = skb_dequeue(&card->rcvq))) {

msg = skb->data;

Missed lower-bound check:
/* 2.4.5/drivers/char/drm/i810_dma.c */
if(copy_from_user(&d, arg, sizeof(arg)))

return –EFAULT;
if(d.idx > dma->buf_count)

return –EINVAL;
buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

...
memcpy(cmd.parm.setup.phone,msg->msg.connect_ind.addr.num,

msg->msg.connect_ind.addr.len - 1);

Enforcing subtle rules
Unexpected overflow
copy_from_user(&wrthdr, addr, sizeof wrthdr);
if (wrthdr.size + wrthdr.offset > FST_MEMSIZE)

return -ENXIO;
copy_from_user(card->mem+wrthdr.offset,data,wrthdr.size)

/* 2 4 9-ac7/fs/intermezzo/psdev c */

Weird security implications
get_user(len, oldlenp); /* 2.4.1/kernel/sysctl.c */
if (len > table->maxlen)

len = table->maxlen;
copy_to_user(oldval, table->data, len);

/* 2.4.9-ac7/fs/intermezzo/psdev.c */
error = copy_from_user(&input, arg, sizeof(input));
input.path = kmalloc(input.path_len + 1, GFP_KERNEL);
if (!input.path)

return -ENOMEM;
error =copy_from_user(input.path,user_path, input.path_len);

Results for BSD 2.8 & 4 months of Linux
– All bugs released to implementors; most serious fixed

Linux BSD
Violation Bug Fixed Bug Fixed
Gain control of system 18 15 3 3
Corrupt memory 43 17 2 2
Read arbitrary memory 19 14 7 7Read arbitrary memory 19 14 7 7
Denial of service 17 5 0 0
Minor 28 1 0 0
Total 125 52 12 12

Local bugs 109 12
Global bugs 16 0
Bugs from inferred ints 12 0
False positives 24 4
Number of checks ~3500 594

System-specific static analysis:
– Correctness rules map clearly to concrete source actions
– Check by making compilers aggressively system-specific
– Easy: digest sentence fragment, write checker.
– One person writes checker, imposed on all code.

Talk Overview

p p
– Result: precise, immediate error diagnosis. Found errors

in every system looked at

Next: Belief analysis
– Using programmer beliefs to infer state of system,

relevant rules
– Key: Find bugs without knowing truth.

Problem: what are the rules?!?!
– 100-1000s of rules in 100-1000s of subsystems.
– To check, must answer: Must a() follow b()? Can foo()

fail? Does bar(p) free p? Does lock l protect x?
– Manually finding rules is hard. So don’t. Instead infer

h d b li h k f di i

Goal: find as many serious bugs as possible

what code believes, cross check for contradiction
Intuition: how to find errors without knowing truth?
– Contradiction. To find lies: cross-examine. Any

contradiction is an error.
– Deviance. To infer correct behavior: if 1 person does X,

might be right or a coincidence. If 1000s do X and 1
does Y, probably an error.

– Crucial: we know contradiction is an error without knowing
the correct belief!

3

MUST beliefs:
– Inferred from acts that imply beliefs code *must* have.

Cross-checking program belief systems

x = *p / z; // MUST belief: p not null
// MUST: z != 0

unlock(l); // MUST: l acquired
x++; // MUST: x not protected by l

– Check using internal consistency: infer beliefs at
different locations, then cross-check for contradiction

MAY beliefs: could be coincidental
– Inferred from acts that imply beliefs code *may* have

– Check as MUST beliefs; rank errors by belief confidence.

p y

// MAY: A() and B()
// must be paired

B(); // MUST: B() need not
// be preceded by A()

A();
…
B();

A();
…
B();

A();
…
B();

A();
…
B();

Trivial consistency: NULL pointers
*p implies MUST belief:
– p is not null

A check (p == NULL) implies two MUST beliefs:
– POST: p is null on true path, not null on false path
– PRE: p was unknown before check– PRE: p was unknown before check

Cross-check these for three different error types.
Check-then-use (79 errors, 26 false pos)

/* 2.4.1: drivers/isdn/svmb1/capidrv.c */
if(!card)
printk(KERN_ERR, “capidrv-%d: …”, card->contrnr…)

Null pointer fun
Use-then-check: 102 bugs, 4 false
/* 2.4.7: drivers/char/mxser.c */
struct mxser_struct *info = tty->driver_data;
unsigned flags;
if(!tty || !info->xmit_buf)

return 0;

Contradiction/redundant checks (24 bugs, 10 false)
/* 2.4.7/drivers/video/tdfxfb.c */
fb_info.regbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt)

return -ENXIO;
fb_info.bufbase_virt = ioremap_nocache(...);
if(!fb_info.regbase_virt) {

iounmap(fb_info.regbase_virt);

Internal Consistency: finding security holes
Applications are bad:
– Rule: “do not dereference user pointer <p>”
– One violation = security hole
– Detect with static analysis if we knew which were “bad”
– Big Problem: which are the user pointers??? Big Problem which are the user pointers???

Sol’n: forall pointers, cross-check two OS beliefs
– “*p” implies safe kernel pointer
– “copyin(p)/copyout(p)” implies dangerous user pointer
– Error: pointer p has both beliefs.
– Implemented as a two pass global checker

Result: 24 security bugs in Linux, 18 in OpenBSD
– (about 1 bug to 1 false positive)

Still alive in linux 2.4.4:
/* drivers/net/appletalk/ipddp.c:ipddp_ioctl */
case SIOCADDIPDDPRT:

return ipddp_create(rt);
case SIOCDELIPDDPRT:

return ipddp_delete(rt);

An example

– Tainting marks “rt” as a tainted pointer, checker warns
that rt is passed to a routine that dereferences it

– 2 other examples in same routine…

case SIOFCINDIPDDPRT:
if(copy_to_user(rt, ipddp_find_route(rt),

sizeof(struct ipddp_route)))
return –EFAULT;

Common: multiple implementations of same interface.
– Beliefs of one implementation can be checked against

those of the others!
User pointer (3 errors):

If one implementation taints its argument, all others must

Cross checking beliefs related abstractly

p g

How to tell? Routines assigned to same function pointer

foo_write(void *p, void *arg,…){
copy_from_user(p, arg, 4);
disable();
… do something …
enable();
return 0;

}

bar_write(void *p, void *arg,…){
*p = *(int *)arg;
… do something …
disable();
return 0;

}

write_fp = foo_write;
…
write_fp = bar_write;

4

MAY beliefs
Separate fact from coincidence? General approach:
– Assume MAY beliefs are MUST beliefs.
– Check them
– Count number of times belief passed check (S=success)
– Count number of times belief failed check (F=fail)Count number of times belief failed check (F fail)
– Expect: valid beliefs = high ratio of S to F.

– Use S and F to compute confidence that belief is valid.
– Rank errors based on this confidence.
– Go down list, inspecting until false positives are too high.
–

How to weigh evidence?

How to weigh MAY beliefs
Wrong way: percentage. (Ignores population size)
– Success=1, Failure=0, Percentage = 1/1 * 100= 100%
– Success=999, Failure=10,Percentage =999/1000 = 99.9%

A better way: “hypothesis testing.”
– Treat each check as independent binary coin toss – Treat each check as independent binary coin toss
– Pick probability p0 that coin “coincidently” comes up S.
– For a given belief, compute how “unlikely” that it

coincidently got S successes out of N (N=S+F) attempts

HUGE mistake: pick T, where Z>T implies MUST
– Becomes very sensitive to T.

Z = (observed – expected) / stderr
= (S – N*p0) / sqrt(N*p0*(1-p0))

Statistical: Deriving deallocation routines
Use-after free errors are horrible.
– Problem: lots of undocumented sub-system free functions
– Soln: derive behaviorally: pointer “p” not used after call

“foo(p)” implies MAY belief that “foo” is a free function
Conceptually: Assume all functions free all argumentsonceptually ssume all funct ons free all arguments
– (in reality: filter functions that have suggestive names)
– Emit a “check” message at every call site.
– Emit an “error” message at every use

– Rank errors using z test statistic: z(checks, errors)
– E.g., foo.z(3, 3) < bar.z(3, 1) so rank bar’s error first
– Results: 23 free errors, 11 false positives

foo(p);
*p = x;

foo(p);
*p = x;

foo(p);
*p = x;

bar(p);
p = 0;

bar(p);
p = 0;

bar(p);
*p = x;

Ranked free errors
kfree[0]: 2623 checks, 60 errors, z= 48.87

2.4.1/drivers/sound/sound_core.c:sound_insert_unit:
ERROR:171:178: Use-after-free of 's'! set by 'kfree‘

...
kfree_skb[0]: 1070 checks, 13 errors, z = 31.92

2.4.1/drivers/net/wan/comx-proto-fr.c:fr_xmit:
ERROR:508:510: Use-after-free of 'skb'! set by 'kfree_skb‘

...
[FALSE] page_cache_release[0] ex=117, counter=3, z = 10.3
dev_kfree_skb[0]: 109 checks, 4 errors, z=9.67

2.4.1/drivers/atm/iphase.c:rx_dle_intr:
ERROR:1321:1323: Use-after-free of 'skb'! set by 'dev_kfree_skb_any‘

...
cmd_free[1]: 18 checks, 1 error, z=3.77

2.4.1/drivers/block/cciss.c:667:cciss_ioctl:
ERROR:663:667: Use-after-free of 'c'! set by 'cmd_free[1]'

drm_free_buffer[1] 15 checks, 1 error, z = 3.35
2.4.1/drivers/char/drm/gamma_dma.c:gamma_dma_send_buffers:

ERROR:Use-after-free of 'last_buf'!
[FALSE] cmd_free[0] 18 checks, 2 errors, z = 3.2

Recall: deterministic free checker

sm free_checker {
state decl any_pointer v;
decl any_pointer x;

start: { kfree(v); } ==> v.freed{ () }
;

v.freed:
{ v != x } || { v == x }

==> { /* do nothing */ }
| { v } ==> { err(“Use after free!”); }

;
}

A statistical free checker
sm free_checker local {
state decl any_pointer v;
decl any_fn_call call;
decl any_pointer x;

start: { call(v) } ==> v.freed,
{{

v.data = call.name();
printf(“checking [POP=%s]”, v.data);

}
;

v.freed:
{ v != x } || { v == x } ==> { /* do nothing */ }

| { v } ==> { err(“Use after free! [FAIL=%s]”, v.data); }
;

}

5

A bad free error

/* drivers/block/cciss.c:cciss_ioctl */
if (iocommand.Direction == XFER_WRITE){

if (copy_to_user(...)) {
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);
return(-EFAULT);return(-EFAULT);

}
}
if (iocommand.Direction == XFER_READ) {

if (copy_to_user(...)) {
cmd_free(NULL, c);
kfree(buff);

}
}
cmd_free(NULL, c);
if (buff != NULL) kfree(buff);

Deriving “A() must be followed by B()”
“a(); … b();” implies MAY belief that a() follows b()
– Programmer may believe a-b paired, or might be a

coincidence.
Algorithm:
– Assume every a-b is a valid pair (reality: prefilter Assume every a b is a valid pair (reality prefilter

functions that seem to be plausibly paired)
– Emit “success” for each path that has a() then b()
– Emit “error” for each path that has a() and no b()

– Rank errors for each pair using the test statistic
» z(foo.success, foo.error) = z(2, 1)

Results: 23 errors, 11 false positives.

foo(p, …)
bar(p, …);

“check
foo-bar”

x();
y();

“check
x-y”

foo(p, …);
…

“error:foo,
no bar!”

Checking derived lock functions
Evilest: /* 2.4.1: drivers/sound/trident.c:

trident_release:
lock_kernel();
card = state->card;
dmabuf = &state->dmabuf;
VALIDATE_STATE(state);

And the award for best effort:
/* 2.4.0:drivers/sound/cmpci.c:cm_midi_release: */
lock_kernel();
if (file->f_mode & FMODE_WRITE) {

add_wait_queue(&s->midi.owait, &wait);
...
if (file->f_flags & O_NONBLOCK) {

remove_wait_queue(&s->midi.owait, &wait);
set_current_state(TASK_RUNNING);
return –EBUSY;

… unlock_kernel();

Traditional:
– Use global analysis to track which routines return NULL
– Problem: false positives when pre-conditions hold,

difficult to tell statically (“return p->next”?)
Instead: see how often programmer checks.

Statistical: deriving routines that can fail

p g
– Rank errors based on number of checks to non-checks.

Algorithm: Assume *all* functions can return NULL
– If pointer checked before use, emit “check” message
– If pointer used before check, emit “error”

– Sort errors based on ratio of checks to errors
Result: 152 bugs, 16 false.

P = foo(…);
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
If(!p) return;
*p = x;

p = bar(…);
*p = x;

The worst bug
Starts with weird way of checking failure:

/* 2.3.99: ipc/shm.c:1745:map_zero_setup */
if (IS_ERR(shp = seg_alloc(...)))

return PTR_ERR(shp);

static inline long IS ERR(const void *ptr)

So why are we looking for “seg_alloc”?
/* ipc/shm.c:750:newseg: */
if (!(shp = seg_alloc(...))

return -ENOMEM;
id = shm_addid(shp);

g _ p
{ return (unsigned long)ptr > (unsigned long)-1000L; }

int ipc_addid(…* new…) {
...
new->cuid = new->uid =…;
new->gid = new->cgid = …
ids->entries[id].p = new;

Effective static analysis of real code
– Write small extension, apply to code, find 100s-1000s of

bugs in real systems
– Result: Static, precise, immediate error diagnosis
– One person writes, imposes on all code.

Summary

Belief analysis: broader checking
– Using programmer beliefs to infer state of system,

relevant rules
– Key feature: find errors without knowing truth

Found lots of serious bugs everywhere.

6

Assertion: Soundness is often a distraction
Soundness: Find all bugs of type X.
– Not a bad thing. More bugs good.
– BUT: can only do if you check weak properties.

What soundness really wants to be when it grows up:
– Total correctness: Find all bugs.
– Most direct approximation: find as many bugs as possible.

Opportunity cost:
– Diminishing returns: Initial analysis finds most bugs
– Spend time on what gets the next biggest set of bugs
– Easy experiment: bug counts for sound vs unsound tools.

Soundness violates end-to-end argument:
– “It generally does not make much sense to reduce the

residual error rate of one system component (property)
much below that of the others.”

Static vs dynamic bug finding
Static: precondition = compile (some) code.
– All paths + don’t need to run + easy diagnosis.
– Low incremental cost per line of code
– Can get results in an afternoon.
– 10-100x more bugs.

 d l ll d Dynamic: precondition = compile all code + run
– What does code do? How to build? How to run?
– Runs code, so can check implications.
– Good: Static detects ways to cause error, dynamic can

check for the error itself.
Result:
– Static better at checking properties visible in source,

dynamic better at properties implied by source.

Open Q: how to get the bugs that matter?
Myth: all bugs matter and all will be fixed
– *FALSE*
– Find 10 bugs, all get fixed. Find 10,000…

Reality
– All sites have many open bugs (observed by us & PREfix)– All sites have many open bugs (observed by us & PREfix)
– Myth lives because state-of-art is so bad at bug finding
– What users really want: The 5-10 that “really matter”

General belief: bugs follow 90/10 distribution
– Out of 1000, 100 (10? or 1?) account for most pain.
– Fixing 900+ waste of resources & may make things worse

How to find worst? No one has a good answer to this.
– Possibilities: promote bugs on executed paths or in code

people care about, …

DE30

Open Q: Do static tools really help?
Bugs found

Bad
behavior

The optimistic hope

Bugs found

The null hypothesis

Bad
behavior

– Danger: Opportunity cost.
– Danger: Deterministic canary bugs to non-deterministic.

p p yp

Bugs found

An Ugly Possibility

Bad
behavior

Laws of static bug finding
Vacuous tautologies that imply trouble
– Can’t find code, can’t check.
– Can’t compile code, can’t check.

A nice, balancing empirical tautology
– If can find code– If can find code
– AND checked system is big
– AND can compile (enough) of it
– THEN: will *always* find serious errors.

A nice special case:
– Check rule never checked? Always find bugs. Otherwise

immediate kneejerk: what wrong with checker???

Slide 31

DE29 Soundness is what you do when you don't have any better ideas.

Once you come up with a new check, there are a million incrementalists that will make it sound if
necessary.

Dawson Engler, 2/22/2005

Slide 33

DE30 optimal number of linux bugs to fix. some of best trials led to passes because too effective.
Dawson Engler, 4/18/2006

