Overflow Checking in Firefox

Brian Hackett

4/8/2010

Goal
¢ Can we clean a code base of buffer overflows?
— Keep it clean?

— Must prove buffer accesses are in bounds

¢ Verification: prove a code base has a property

Sixgill

« Verifier for buffer accesses in large code bases
— Note: not quite full verification
* Mostly automatic
— Can be supplemented with annotations
e Linux: 89% of accesses checked automatically
* Firefox: ditto for 82%

* Firefox javascript engine: 92% checked using
annotations

Sixgill (cont)

* Early stages of deployment on Firefox
— Open source
— More (not much more) at sixgill.org

¢ Rest of this lecture
— Design questions addressed in building Sixgill
— Sixgill design and architecture
— Demo!

Verifier Design Questions

¢ What properties can be checked?
¢ What level of precision?

¢ What degree of scalability?

* How are annotations used?

¢ Can the tool make assumptions?

¢ Design for clear reports
— Great majority will be false positives

Sixgill: Properties

¢ Check properties expressible as assertions
— Buffer overflows
— Hand-written ‘assert()’ failures
— NULL dereferences
— Integer overflows
¢ Most properties need customization
— buf[i] = 0; =) assert(i < ubound(buf));

Sixgill: Precision

¢ Understand any quantifier-free assertion
— No loops, no recursion
— Quantifiers are very hard to reason about
¢ Understand loop-free pieces of code exactly
— Use abstractions at function/loop boundaries
¢ Some technical limitations to these
— More later

4/8/2010

Sixgill: Scalability

¢ Analyze systems of any size
— Should parallelize, avoid memory constraints
— Linux, Firefox: 2-7 MLOC

* Verifiers with comparable power: 5-10 KLOC

Sixgill: Annotations

¢ Infer information without user input
— Be robust, deterministic against code changes

¢ Use annotations when inference breaks down
— Target: one annotation per 1-3 KLOC
— Must be clear where to add annotations

Sixgill: Assumptions

¢ Make some basic assumptions
— Compiler, hardware behave correctly
— Program is memory safe, type safe
— These are made by almost all verifiers
* Make some additional assumptions
— No integer overflow, heap stability properties, ...
— More later

¢ Eventual target is full verification

Why is code correct?

» Buffer accesses are correct for a reason
— preconditions, postconditions, loop invariants, ...
— Follow from each other and the code semantics
* Analysis goal: find these reasons
¢ Reasons follow patterns
— Use inference for the common patterns
— Use annotations for the rest

Example

void foo(int len) —
{ | Postcondition: len <= ubound(retval)

char *buf = malloc(len);
bar(buf, len);

| Precondition: len <= ubound(buf) |

void bar(char *buf,

{ |Loop|nvaHantIen<: ubound(buﬂ|
for (int i = 0; i < len; i++)
} buf[i] = O; | Assert: i < ubound(buf) |

4/8/2010

Another Example

void foo(int len)

Postcondition: len <= ubound(retval) |
char *buf = malTToc(Ten);
bar(buf, len);

| Precondition: len <= ubound(buf) |

Loop Invariant: buf + plen == p | fen)

char *p = buf; . N
int plen = 0; |Loop|nvanant|en<- ubound(buﬂ|

while (plen++ < len)
*p++ = 0;

Assert: 0 < ubound(p)

Program Facts

¢ A fact is a condition which holds in the program
— Precondition(foo, b)
— Postcondition(foo, b)
— Looplnvariant(foo, loop, b)
— Typelnvariant(type, b)
— Globlnvariant(b)
— Assert(foo, point, b)
¢ b values are quantifier free boolean formulas

Following Facts

¢ Agoal fact f can follow from zero or more
dependent facts f,, f1, f5 ...
— If the dependents hold, the goal holds
* Show this using a memory model
— Exact model of a loop free piece of code
* Note: not quite exact
— Inject assumes for f,, f;, f5, ...
— Inject asserts for f

Memory Example

void bar(char *buf, int len) bar:

char *p = buf; p = buf;
int plen = 0; plen = 0;
while (plen++ < len) invoke(loop);
*p++ = 0;
¥ loop:
if (plen++ < len) {
*p++ = 0;
invoke(loop);
}

Memory Example (cont)

void bar(char *buf, int len) bar:

char *p = buf; p = buf;
int plen = 0;' plen = 0:
while (plen++ < len) assert(buf + plen == p)
*pt+ = 03 invoke(loop);
1
- loop:
Loop Invariant: buf + plen == p assume(buf + plen == p)
if (plent+ < len) {
*p++ = 0;

assert(buf + plen == p)
invoke(loop);

3

Memory Example (cont)

void bar(char *buf, int len) bar:
{

. . p = buf;
char *p = buf;

int plen = 0; r_)len = 0;
while (plen++ < len) invoke(loop);
*p++ = 0;
b loop:
assume(buf + plen == p)

Loop Invariant: len <= ubound(buf) I assume(len <= ub(buf))

if (plen++ < len) {
assert(0 < ub(p))
*p++ = 0;
invoke(loop);

| Loop Invariant: buf + plen == p |

Assert: 0 < ubound(p) I 3

Memory Model details

* Memory model built on an SMT solver
— Solves boolean formulas over linear equations
— We use Yices (from SRI International)

* Solver can’t handle nonlinear arithmetic

* Memory model introduces unsoundness

4/8/2010

Nonlinear Arithmetic

* Major gap in analysis precision

¢ Mostly fixable using approximations ...
—(a&b) o) (3& b<=2a)&& (a&b<=b)

e ... but not always

int *buf = calloc(width, height * sizeof(int));
int *pos = buf;
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++)
*pos++ = 0;

Memory Model unsoundness

¢ Does not consider integer overflow
int *buf = malloc(len * sizeof(int));
for (int i = 0; 1 < len; i++)
buf[i] = 0;

¢ Assumes null terminators not overwritten

char buf[100];
strcpy(buf, str);
clobber(buf);

int len = strlen(buf);

* These can be handled with separate analyses

Analysis

e Start with a goal fact f
— A buffer access or an intermediate fact

* Generate candidate sets Fy, F;, F,, ...

¢ Test if each candidate F is sufficient --- f
follows from the dependent facts in F

¢ Pick a sufficient set and recurse on each
dependent

Candidates

void bar(char *buf, int len)

for (int i
buf[i]

0; 1 < len; i++)
0;

}

— Target: | Assert: i < ubound(buf) |

— See compare ‘i< len’

— Guess: |LoopInvaﬁantlen<=ubound(buﬂ|

— Also guess: | Loop Invariant: ubound(buf) <= len |

Candidates (cont)

void bar(char *buf, int len)

{
char *p = buf;
int plen = 0;
while (plen++ < len)
*p++ = 0;
}

— Target: I Assert: 0 < ubound(p) |
— See increments of plen and p

— Initial values of plen and p are 0 and buf

— Guess: | Loop Invariant: buf + plen == p |

— See compare ‘plen < len’

— Add to guess: | Loop Invariant: len <= ubound(buf) |

Sufficient Choices

Precondition: a <= ubound(buf) |

4/8/2010

int b = bar(l Postcondition: retval < ubound(buf)
if (b < a)

buf[b] = 0; l
Assert: b < ubound(buf) |

* No way to tell which is better
— Pick one arbitrarily
— What if we pick wrong?

Annotations

¢ Annotations are facts which have been
specified as holding by a user

— Assume all annotations when testing candidates

Untrusted annotations: separately try to prove
the annotation holds

— Same procedure as for buffer accesses

Buffer Write Categories

¢ Verified

— proved automatically

Annotatable

— provable using untrusted annotations
Inexpressible

— Unprovable, but dependent facts can be annotated
— Limitations of tool

Unverifiable

— Dependent facts cannot be annotated

— Includes all bugs

Results

Linux 2.6.17.1

— 55676 buffer writes total
— All but 6088 verified (89%)
e Firefox 1.9.1

— 16511 buffer writes total
— All but 2936 verified (82%)

¢ More trivially verifiable writes in Linux

int buf[10];
buf[9] = 3;

Results (cont)

¢ Detailed results for Firefox javascript engine
e 2801 buffer writes (17% of all of Firefox)
¢ All but 566 verified (80%)
* 344 annotatable
— Requiring 64 annotations
¢ 98 inexpressible
¢ 124 unverifiable
— 9 look buggy (not confirmed yet)

Demo

* Tool Ul can be used to:
— Browse and inspect reports
— Add annotations
— Reanalyze accesses using added annotations

* Reports are chains of dependents from a
buffer access

— Tool gave up on trying to prove the dependents

¢ Firefox reports online at sixgill.org

