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Abstract

There are three popular methods for constructing highly
retargetable compilers: (1) the compiler emits abstract ma-
chine code which is interpreted at run-time, (2) the compiler
emits C code which is subsequently compiled to machine
code by the native C compiler, or (3) the compiler’s code-
generator is generated by a back-end generator from a formal
machine description produced by the compiler writer.

These methods incur high costs at run-time, compile-
time, or compiler-construction time, respectively.

In this paper we will describe a novel method which
promises to significantly reduce the effort required to retar-
get a compiler to a new architecture, while at the same time
producing fast and effective compilers. The basic idea is to
use the native C compiler at compiler construction time to
discover architectural features of the new architecture. From
this information a formal machine description is produced.
Given this machine description, a native code-generator can
be generated by a back-end generator such as BEG or burg.

A prototype Automatic Architecture Discovery Unit has
been implemented. The current version is general enough to
produce machine descriptions for the integer instruction sets
of common RISC and CISC architectures such as the Sun

SPARC Digital Alpha. MIPS, DEC VAX. and Intel x86.
The tool is completely automatic and requires minimal input
from the user: principally, the user needs to provide the

internet address of the target machine and the command-
lines by which the C compiler, assembler, and linker are

invoked.
nvoxed

1 Introduction

An important aspect of a compiler implementation is its re-
targetability. For example, a new programming language
whose compiler can be quickly retargeted to new hard-
ware/operating system combinations is more likely to gain
widespread acceptance than a language whose compiler re-
quires extensive retargeting effort.

In this paper we will briefly review the problems as-
sociated with two popular approaches to building retar-
getable compilers (C Code Code Generation (CCCG), and

Specification-Driven Code Generation (SDCG)), and then
propose a new method (Self-Retargeting Code Generation
(SRCG)) which overcomes these problems.

1.1 C Code Code Generation

The back-end of a CCCG compiler generates C code which
is compiled by the native C compiler. If care has been taken
to produce portable C code, then targeting a new archi-
tecture requires no further action from the compiler writer.
Furthermore, any improvement to the native C compiler’s
code generation and optimization phases will automatically
benefit the compiler. A number of compilers have achieved
portability through CCCG. Examples include early versions
of the SRC Modula-3 compiler [2] and the ISE Eiffel com-
piler [7].

Unfortunately, experience has shown that generating
truly portable C code is much more difficult than it might
seem. Not only is it necessary to handle architecture and
operating-system specific differences such as word-size and
alignment, but also the idiosyncrasies of the C compilers
themselves. Machine-generated C code will often exercise
the C compiler more than code written by human program-
mers, and is therefore more likely to expose hidden problems
in the code-generator and optimizer. Other potential prob-
lems are the speed of compilation® and the fact that the
C compiler’s optimizer (having been targeted at code pro-
duced by humans) may be ill equipped to optimize the code
emitted by our compiler.

Further complications arise if there is a large semantic
gap between the source language and C. For example, if
there is no clean mapping from the source language’s types
to C’s type, the CCCG compiled program will be very diffi-
cult to debug.

CCCG-based compilers for languages supporting garbage
collection face even more difficult problems. ny collec-
tion algorithms assume that there will always be apointer-
to_the beginning of every dynamically allocated object, a
requirement which is violated by some optimizing C com-
pilers. Under certain circumstances this will result in live
objects being collected.

Other compelling arguments against the use of C as an
intermediate language can be found in [3].

In some CCCG compilers the most expensive part of compila-
tion is compiling the generated C code. For this reason both SRC
Modula-3 and ISE Eiffel are moving away from CCCG. ISE Eiffel now
uses a bytecode interpreter for fast turn-around time and reserves the
CCCG-based compiler for final code generation. SRC Modula-3 now
supports at least two SDCG back-ends, based on gcc and burg.
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1.2 Specification-Driven Code Generation

The back-end of a SDCG compiler generates intermedi-
ate code which is transformed to machine code by a
specification-driven code generator. The main disadvantage
is that retargeting becomes a much more arduous process,
since a new specification has to be written for each new ar-
chitecture. A gcc [17] machine specification, for example,
can be several thousand lines long. Popular back-end gener-
ators such as BEG [6] and burg [9] require detailed descrip-
tions of the architecture’s register set and register classes, as
well as a set of pattern-matching rules that provide a map-
ping between the intermediate code and the instruction set.
See Figure 15 for some example rules taken from a BEG
machine description.

Writing correct machine specifications can be a difficult
task in itself. This can be seen by browsing through gcc’s
machine descriptions. The programmers writing these spec-
ifications experienced several different kinds of problems:

Documentation/Software Errors/Omissions The
most serious and common problems seem to stem
from documentation being out of sync with the actual
hardware/software implementation. Examples: *
the manual says that the opcodes are named movsx.. .,
but the assembler ... does not accept that. (i386)"
“WARNING! There is a small i860 hardware limitation
(bug?) which we may run up against ... we must avoid
using an ‘addu’ instruction to perform such comparisons
because ... This fact is documented in a footnote on
page 7-10 of the ... Manual (i860)."

Lack of Understanding of the Architecture Even
with the access to manuals, some specification writers
seemed uncertain of exactly which constructs were
legal. Examples: “Is this number right? (mips),” “Can

this ever happen on 3867 (i386)," “Will divxu always
work here? (i386)."

Hardware/Software Updates Often, updates to the
hardware or systems software are not immediately re-
flected by updates in the machine specification. Exam-
ple: “This has not been updated since version 1. It is
certainly wrong. (ns32k)."

Lack of Time Sometimes the programmer knew what
needed to be done, but simply did not have the time to
implement the changes. Example: “This INSV pattern
is wrong. It should ... Fixing this is more work than we
care to do for the moment, because it means most of the
above patterns would need to be rewritten, ... (Hitachi
H8/300)."

Note that none of these comments are gcc specific. Rather,
they express universal problems of writing and maintaining
a formal machine specification, regardless of which machine-
description language/back-end generator is being targeted.

1.3 Self-Retargeting Code Generation

In this paper we will propose a new approach to the design
of retargetable compilers which combines the advantages of
the two methods outlined above, while avoiding most of their
drawbacks. The basic idea is to use the native C compiler
to discover architectural features of the new target machine,
and then to use that information to automatically produce
a specification suitable for input to a back-end generator.

We will refer to this method as Self-Retargeting Code Gen-
eration (SRCQG).

More specifically, our system generates a number of small
C programs® which are compiled to assembly-code by the
native C compiler. We will refer to these codes collectively as
samples, and individually as C code samples and assembly-
code samples.

The assembly-code samples are analyzed to extract in-
formation regarding the instruction set, the register set and
register classes, the procedure calling convention, available
addressing modes, and the sizes and alignment constraints
of available data types.

The primary application of the architecture discovery
unit is to aid and speed up manual retargeting. Although a
complete analysis of a new architecture can take a long time
(several hours, depending on the speed of the host and tar-
get systems and the link between them), it is still 1-2 orders
of magnitude faster than manual retargeting.

However, with the advent of SRCG it will also become
possible to build self-retargeting compilers, i.e. compilers
that can automatically adapt themselves to produce native
code for any architecture. Figure 1 shows the structure of
such a compiler ac for some language “A”. Originally de-
signed to produce code for architectures A1 and A2, ac is
able to retarget itself to the A3 architecture. The user only
needs to supply the Internet address of an A3 machine and
the command lines by which the C compiler, assembler, and
linker are invoked.

The architecture discovery package will have other po-
tential uses as well. For example, machine-independent tools
for editing of executables (EEL [13]), decompilation (Ci-
fuentes [4]), and dynamic compilation (DCG [8]) all need
access to architectural descriptions, and their retargeting
would be simplified by automatic architecture discovery.

2 System Overview and Requirements

For a system like this to be truly useful it must have few re-
quirements — of its users as well as of the target machines.
The prototype implementation has been designed to be as
automatic as possible, to require as little user input as pos-
sible, and to require the target system to provide as few and
simple tools as possible:

1. We require a user to provide the internet address of the
target machine and the command-lines by which the C
compiler, assembler, and linker are invoked. For a wide
range of machines all other information is deduced by
the system itself, without further user interaction.

2. We require the target machine to provide an assembly-
code producing C compiler, an assembler which flags
illegal assembly instructions,® a linker, and a remote
execution facility such as rsh. The C compiler is used
to provide assembly code samples for us to analyze;
the assembler is used to deduce the syntax of the as-
sembly language; and the remote execution facility is
used for communication between the development and
target machines.

2Qbviously, other widely available languages such as FORTRAN
will do equally well.

3The manner in which errors are reported is nnimpartant; assem-
blers which simply crash on the first error are quite acceptable for

our purposes.

Oracle: no false positive, no
false negative.
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Figure 1: The structure of a self-retargeting compiler ac for some language A. The back-end generator BEG and the
architecture discovery system are ntegrated into ac. The user can tell ac to retarget itself to a new architecture A3 by giving
the Internet address of an A3 machine and the command lines by which the C compiler, assembler, and linker are invoked:
ac -retarget —ARCH A3 -HOST kea.cs.auckland.ac.nz -CC ’cc -5 -g -o 0 %I’ -AS ’as -o %0 4I’ -LD ---.

If these requirements have been fulfilled, the architecture
discovery system will produce a BEG machine description
completely autonomously.

The architecture discovery system consists of five ma-
jor components (see Figure 2). The Generator generates C
code programs and compiles them to assembly-code on the
target machine. The Lezer extracts and tokenizes relevant
instructions (i.e. corresponding to the C statements in the
sample) from the assembly-code. The Preprocessor builds
a data-flow graph from each sample. The FEztractor uses
this graph to extract the semantics of individual instructions
and addressing modes. The Synthesizer, finally, gathers the
collected information together and produces a machine de-
scription, in our case for the BEG back-end generator.

The_Generator and Lexer

Why sufg‘ficient?

sisAjeue weubouid
9|0UYM OU BWNSSy

he Generator produces a large number of simple C
code samples. Samples may contain arithmetic and logi-
cal operations main() {int b=5,c=6,a=b+c; ]}, conditionals
main() {int b=5,c=6,a=7; if(b<c)a=8;}', and procedure
calls 'main() {int b=5,a; a=P(b);}'. We would prefer to
generate a “minimal” set of samples, the smallest set such
that the resulting assembly code samples would be easy to
analyze and would contain all the instructions produced by
the compiler. whether a par-
ticular sample will produce interesting code combinations for
a particular machine until we have tried to analyze it. We
must therefore produce as many simple samples as possible.
For examptefo straction, we generate: "a=b-c', "a=a-
b, I'azb—a""'azb—b_', a=T7-b', "a=b-7", "a=T7-a', and
fa=a-7". ThiSnrea rat- we'will be left with a large number
of samples, typically around 150 for each numeric type sup-
ported by the hardware. The samples are created by simply
instantiating a small number of templates parameterized on
type (int,float,etc.) and operation (+,-,etc.).

The samples are compiled to assembly code by the native
C compiler and the Lexer extracts the instructions relevant
to our analysis. This is non-trivial, since the relevant in-
structions often only make up a small fraction of the ones
produced by the C compiler.

Fortunately, it is possible to design the C code samples
to make it easy to extract the relevant instructions and
to Tminimize the compiter's opportunities for optimizations
that could complicate our analyses. I Figure 3—a sepas
rately compiled procedure Init initializes the variables a,
b, and c, but hides the initialization values from the com-
piler to prevent it from performing constant propagation.
The main routine contains three conditional jumps to two
labels Begin and End, immediately preceding and follow-

ing the statement a=b+c. The compiler will not be able to
optimize these jumps away since they depend on variables
hidden within Init. Two assembly-code labels correspond-
ing to Begin and End will effectively delimit the instructions
of interest. These labels will be easy to identify since they
each must be referenced at least three times. The printf
statement ensures that a dead code elimination optimization
will not remove the assignment to a.

3.1 Tokenizing the Input

Before we can start parsing the assembly code samples, we
must try to discover as much as possible about the syntax
accepted by the assembler. Fortunately, most modern as-
sembly languages seem to be variants of a “standard” nota-
tion: there is at most one instruction per line; each instruc-
tion consists of an optional label, an operator, and a list
of comma-separated arguments; integer literals are prefixed
by their base; comments extend from a special comment-
character to the end of the line; etc.

We use two fully automated techniques for discovering
the details of a particular assembler: we can textually scan
the assembly code produced by the C compiler or we can
draw conclusions based on whether a particular assembly
program is accepted or rejected by the assembler. For exam-

ple, to discover the syntax of integer literals (Which bases
are accepted? Which prefixes do the different bases use?
Are upper, lower, and/or mixed case hexadecimal literals
accepted?) mpile main() {int a=1235;}" an n th
resulting assembly code for the constant 1235, in all the com-

mon bases. To discover the comment-character accepted by

the assembler we start out with the assembly code produced
from 'main(){}', add an obviously erroneous line preceded
by a suspected comment character, and submit it to the
assembler for acceptance or rejection.

These techniques can be used for a number of similar
tasks. In particular, we discover the syntax of addressing
modes and registers, and the types of arguments (literals,
labels, registers, memory references) each operator can take.
We also use assembler error analysis to discover the accepted
ranges of integer immediate operands. On the SPARC, for
example, we would detect that the add instruction’s imme-
diate operand is restricted to [-4096,4095].

Some assembly languages can be quite exotic. The
Tera[5], for example, uses a variant of Scheme as its as-
sembly language. In such cases our automated techniques
will not be sufficient, and we require the user to provide a
translator into a more standard notation.
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( ) {} Generate (b) .aligx; 2 198 (C) Iw goree. 1201it($sprag)
A . sub VS Lex | w  $107°8,1161%($sp™e)
main() { Compile| ,, 2?6 1?%%?)) i > | mul $117°8 §9ree §107°e
int a,b,c; 1w s sp re 1lit re
a=b*c; ; mul $11, $9, $10 sw  $117°€,1247(§sp™°€)
} SW $11, 124($Sp) {} Pre
....... process (d)
(f) add $sp, 128 (e)
RULE Mult S%rln: i([reg/2] <-mul<-[reg/2,reg/3], |Ex-
Reg.b Reg.c -> Reg.a; t.e e(*, int, [ tract
COST 1; size e(reg,int, [arg(1)]),
EMIT { e(reg,int, [arg(2)]) @
printf ("mul",...); ) g ’ g

Figure 2: An overview of the major components of the architecture discovery system. The Generator produces a large number
of small C programs (a) and compiles them to assembly on the target machine. The Lexer analyzes the raw assembly code
(b) and extracts and tokenizes the instructions that are relevant to our further analyses (c¢). The Preprocessor deduces the
signature of all instructions, and builds a data-flow graph (d) from each sample. The semantics of individual instructions (e)
are deduced from this graph, and from this information, finally, a complete BEG specification (f) is built.

QL1.c

&c);
Begin
End;
Begin
End;
Begin
End;

, ad);

/* init.h */ /*
extern ADD @L1.a @QL1.b
int z1,z2,z3, */
z4,z5,26; #include "init.h"
extern main () {
void Init(); int a, b, c;
Init(&a, &b,
/* init.c */ if (z1) goto
Z . ;
o int z1,z2,z3, if (z2) goto
=4 .
5 :!.f (z3) goto
8 o,p) if (z4) goto
a if (z5) goto
e if (26) goto
= Begin:
(728 a=>b + c;
o End:
= *p=109; printf("%i\n"
g exit (0);
3 }
>
(a) (b)

tstl =z1
jeql L1
jbr
Li:tstl =z2
jeql L3
jbr
L3:tstl =z3
jeql L5
; jbr
L5:tstl z4
i jeql L6
: jbr
’ L6:tstl z5
jeql L7
jor
L7:tstl =z6
;:jl What assumptions
L2:add13 -12(fp),-8(fp),-4(£p) aPOUt how labels
L4: emitted?
(c)

Figure 3: A C Code sample and the resulting assembly-code sample for the VAX. The relevant instruction (add13) can be
easily found since it is delimited by labels L2 and L4, corresponding to Begin and End, respectively.

4 The Preprocessor

The samples produced by the lexical phase may contain ir-
regularities that will make them difficult to analyze directly.
Some problems may be due to the idiosyncrasies of the archi-
tecture, some due to the code generation and optimization
algorithms used by the C compiler. It is the task of the Pre-
processor to identify any problems and convert each sample
into a standard form (a data-flow graph) which can serve as
the basis for further analysis.

The data-flow graph makes explicit the exact flow of in-
formation between individual instructions in a sample. This

means that, for every instruction in every sample, we need
to know where it takes its arguments and where it deposits
its result(s). There are several major sources of confusion,
some of which are illustrated in Figure 4.

For example, an instruction operand that does not ap-
pear explicitly in the assembly code, but is hardwired into
the instruction itself, is called an implicit argument. They
occur frequently on older architectures (on the x86, cltd
(Figure 8) takes its input argument and delivers its result
in register %eax), as well as more recent ones when proce-
dure call arguments are passed in registers (Figure 4(a)). If
we cannot identify implicit arguments we obviously cannot
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main(){int a=P(34);} || main(){int a=503<<a;}

main(){int b,c,a=b*c;} main(){int b,c,a=P(b,c);}
movl -12(%ebp),’eax
hl Yeax
1d [%£fp+-0x8], %00 pus ’ ’
; . movl -8(Jebp),l%eax
1d [4f ; c],hol pushl Yeax
nop M call P
. vt addl $8,%esp
st %00, [1fp+-0x4] movl Yeax,leax
movl Yeax,-4(%ebp)
(a) (b)

1dq $1, 184($sp)
addl $1, 0, $2
1dil $3, 503

stq $4: 184 ($sp

mov 341, %00
st %00, [4fp-41]

(c) (d)

Figure 4: Examples of compiler- and architecture-induced irregularities that the Preprocessor must deal with. On the SPARC,
procedure actuals are passed in registers %00, %o1l, etc. Hence these are implicit input arguments to the call instruction in
(a). In (b), the x86 C compiler is using register %eax for three independent tasks: to push b, to push c, and to extract the

esutt-of the function call. The SPARC mov instruction in (c) is in the call instruction’s delay slot, and is hence executed
he call. In (d), finally, the Alpha C compiler generated a redundant instruction "addl $4, 0, $4".

accurately describe the flow of information in the samples.

As shown in Figure 4(b), a sample may contain several
distinct uses of the same register. Again, we need to be
able to detect such register reuse or the flow of information
within the sample can not be identified.

4.1 Mutation Analysis "run it" - a bit like superoptimizer

Static analysis of individual samples is not sufficient to ac-
curately detect and repair irregularities such as the ones
shown in Figure 4. Instead we use a novel dynamic tech-
nique (called Mutation Analysis) which compares the exe-
cution result of an original sample with one that has been

Compile

C code
sample

false pos, but can .
Compile &
have false neg Execute

(accept when not
eauiv)

Assembly

CPU = oracle. No Code Sample

slightly changed:
Mutate
@ Mutated
Sample
Assemble
& Execute

== [ros}

[rome] —

Figure 5 lists the available mutations.

4.2 Eliminating Redundant Instructions

To illustrate this idea we will consider a trivial, but ex-
tremely useful, analysis, redundant instruction elimination.
An instruction is removed from a sample and the modified
sample is assembled, linked, and executed on the target ma-
chine. If the mutated sample produce e
ariginal one, the instruction is removed permanently. This
pro . 1§ . . , ]
"when can this Even for trivial mutation like this, we must take spe-
make mistakefal care for the mutation not to succeed by chance. As
(consider noillustrated in Figure 6, countering random successes often

interlocks, involves judicious use of register clobbering.
undefined The result of these mutations is a new set of simplified
behavior or samples, where redundant instructions (such as "move R1,

even branche%l_" mop', "add R1, 0, RI") have been eliminated. These
samples will be easier for the algorithms in Section 5 to
analyze. They will also be less confusing to further mutation
analyses.
We will next consider three more profound preprocessing
tasks (Live-Range Splitting, Implicit Argument Detection,
and Register Definition/Use Computation) in detail.

4.3 Splitting Register Live-Ranges

Some samples (such as Figure 4(b)) will contain several un-
related references to the same register. To allow further
analysis, we need to split such register references into dis-
tinct regions. Figure 7 shows how we can use the rename
and clobber mutations to construct regions that contain the
smallest set of registers that can be renamed without chang-

ing the semantics of the sample. Regions are grown back-

wards, starting with the Tast use of a register, and continuing

until the region also contains the corresponding definition of
that register. To make the test completely reliable the new

register is clobbered just prior+te the proposed region, and
each mutated sample is ru @ imes with different clob-
bering values.

Enough?

4.4 Detecting Implicit Arguments

Detecting implicit arguments is complicated by the fact that
some instructions have a variable number of implicit input
arguments (cf. call in Figure 4(a,c)), some have a vari-
able number of implicit output arguments (the x86’s idivl
returns the quotient in %eax and the remainder in %edx),
and some take implicit arguments that are both input and
output.

The only information we get from running a mutated
sample is whether it produces the same result as the origi-
nal one. Therefore all our mutations must be “correctness
preserving”, in the sense that unless there is something spe-
cial about the sample (such as the presence of an implicit
argument), the mutation should not affect the result.

So, for example, it should be legal to move an instruction

I> before an instruction I; as long as they (and any inter-

mediate instructions) do not have any registers in common.*

Therefore the mutation in Figure 8(c) should succeed, which
it does not, since %eax is an implicit argument to idivl.
The algorithm runs in two steps. We first attempt to
prove that, for each operator O and each register R, O is
independent of R, i.e. R is not an implicit argument of O
(See Figure 8(b)). For those operator/register-pairs that
fail the first step, we use move mutations to show that the
registers are actually implicit arguments (Figure 8(c)).

4Note that while this statement does not hold for arbitrary codes
(where, for example, aliasing may be present), it does hold for our
simple samples.

"does
forwards
work ?"

"needed?"
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(1) op; A}, Rr1, A3
(2) 0Py A3, A%, A3
(3) 0Ps R1, A}, A}
(1°) o, A, R1, A3

copy((1) ,after,(3))

(2) 0P, Aj, A3, A3

(1) 0Py Ai,R1, A}

(1) op; A!, R1, A3 (3) 0P; R1, A3, A3

(2) 0Py A3, A3, A3 move ((1),after, (2))
(3) op; Ri, A3, A3

Original sample (1) opP; Af,R1, A}

(3) op; R1, A3, A3

delete((2))

(1) op; Al,m1, A3
(2) op, AL, A2, A3
MOV -13,R1
(3) 0P; R1, A%, A3
clobber (R1,after, (2))
(1) op; Al, R1, A3
(2) op, AL, A2, A3
(3) 0P; R2, A2, A3

rename (R1,R2, (3))

(1) op; Al, R3, A}
(2) 0Py A;, A3, A}
(3) 0Ps R3, A%, A}

renameAl1(R1, R3)

Figure 5: This table lists the available mutations: we can move, copy, and delete instructions, and we can rename

and clobber (overwrite) registers.

The Als are operands not affected by the mutations. To avoid a mutation succeeding

(producing the same value as the original sample) by chance, we always try several variants of the same mutation. A mutation
is successful only if all variants succeed. Two variants may, for example, differ in the values used to clobber a register, or the

new register name chosen for a rename mutation.

Original Sample [delete((1))]

[clobber($1,before, (1)),

[clobber($1,before, (1)),

(1) 1ldq $1, 184($sp)
(2) addl $1, 0, $2 ? g; ?g‘ﬁ :; (5)(’)3$2
(3) 1dil $3, 503  —- ’

—(4) sl1 $3, $2, $4
(4) s11 $3, $2, $4 » $2,
(5) addl $4, 0, $4 (56) addl $4, 0, $4

(6) stq $4, 184($sp) (6) stq $4, 184($sp)

(a) (b)

(2) 05

(3) 1dil1 $3, 503

(4) sl11 $3, $2, $4

(5) addl $4, 0, $4

(8) stq $4, 184($sp)
(c)

1diq $1, 234
1diq $2, -45256
ldiq $3, 33135
ig $4, 97

(2) addl $1, O,
(3) 1dil $3, 50

(4) s11 $3, $2, $4

(5) addl $4, 0, $4

(6) stq $4, 184($sp)
(d)

How to pick?
Looks like wil
make <, >, etc
give different
results.

Figure 6: Removing redundant instructions. In this example we are interested in whether instruction (1) is redundant. In
(b) we delete the instruction; assemble, link, and execute the sample; and compare the result with that produced from the
original sample in (a). If they are the same, (1) is redundant and can be removed permanently. Unfortunately, this simple
mutation will succeed if register $1 happens to contain the correct value. To counter this possibility, we must clobber all
registers with random values. To make sure that the clobbers themselves do not initialize a register to a correct value, two
variant mutations ((c¢) and (d)) are constructed using different clobbering values. Both variants must succeed for the mutation

to succeed.

4.5 Computing Definition/Use

Once implicit register arguments have been detected and
made explicit and distinct register uses have been split into
individual live ranges, we are ready to attempt our final pre-
processing task. Each register reference in a live range has
to be analyzed and we have to determine which referen

are pure uses, pure definitions, and use-definitions. In-
structions that both use and define a register are common
on CISC machines (e.g. on the VAX "addl2 5,r1" increments

R1 by 5), but less common on modern RISC machi
The first occurrence register in a live-
a definition; the last one must) be a use. The inte iate

occurrences can either bepure uses or use-definitions. For
example, in the following x86 multiplication sample, the first
reference to register %edx (%edx1) is a pure definition, the
second reference (%edx3) a use-definition, and the last one
(%edx3) a pure use:

main () { oy
int a,b,c; movl -8(%ebp),%edx;

b %o imull -12(%ebp) , %edxs
) a ¢ movl %edxs,-4(%ebp)

Figure 9 shows how we use the copy and rename muta-

Why not just run same instruction twice?
Also have to guard against things like "Id r1,0(r1)"

register R1 to a reference of R1 that is either a use or a use-

definition. If the reference is a use/definition the mutation

will fail, since the new value computed will not be passed

on to the next instruction that uses R1.

4.6 Building the Data-Flow Graph

The last task of the Preprocessor is to combine the gathered
information into a data-flow graph for each sample. This
graph will form the basis for all further analysis.

The data-flow graph describes the flow of information
between elements of a sample. Information that was im-
plicit or missing in the original sample but recovered by the

Preprocessor is made explicit in the graph. The nodes of the

tions® to create a separate path from the first definition of a

5Necessary register clobbers have been omitted for clarity.

graph are assembly code operators and operands and there
is an edge A — B if B uses a value stored in or computed
by A.

For ease of identification, each node is labeled N?, where N
is the operator or operand, i is the instruction number, and
a is N’s argument number in the instruction. In Figure 10(b),

for example, $11§ refers to the use of register $11 as the first
argument to the third instruction (mul). @L1.a is a data
descriptor [11] referring to the variable a at static nesting
level 1.

Given the information provided by the various mutation
analyses, building the graph for a sample S is straightfor-
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[rename (%eax,%ebx, (4)), [rename (%eax,%ebx, (4)), [rename (%eax, %ebx, (4)),
Mutation clobber (%ebx,before, (4)] rename (%eax, %ebx, (3)), rename (%eax, %ebx, (3)),
Mutated clobber (%ebx,before, (3)] rename (%eax, %ebx, (2)),
Samples clobber (%ebx,before, (2)]
(1) movl -12(Jebp), %eax| (1) movl -12(%ebp), j%eax | (1) movl -12(%ebp), %eax | (1) movl -12(%ebp) jeax
(2) pushl %eax (2) pushl %eax (2) pushl jeax movl -123, %ebx
(3) movl -8(%ebp),%eax | (3) movl -8(%ebp),jeax movl -123, Y%ebx (2) pushl [Yebx
(4) pushl %eax movl -123, %ebx (3) movl -8(%ebp)} %ebx (3) movl -8(%ebp)|, %ebx
(5) call P (4) pushl (4) pushl[¥ebx (4) pushl{¥ebx
(6) addl $8, %esp (5) call P (5) call P (5) call P
(7) movl Yeax, %edx (6) addl $8, %esp (6) addl ¢8, /esp (6) addl $8, %esp
(8) movl Yedx,-4(%ebp) | (7y pmoyl Yeax, Yedx (7) movl Yeax, %edx (7) movl Yeax, jedx
(8) movl %edx,-4(%ebp) (8) movl Y%edx,-4(%ebp) (8) movl Yedx,-4(%ebp)
(a) (b) (c) (d)

Figure 7: Splitting the sample from Figure 4(b). (a) shows the sample after the references to %eax in (7) and (8) have been
processed. Mutation (b) will fail (i.e. produce a value different from the original sample), since the region only contains the
use of %eax, not its definition. The region is extended until the mutated sample produces the same result as the original (c),
and then again until the results differ (d). Figure 4(e) shows the sample after regions have been split and registers renamed.

7

Original Sample

[rename (}ecx,%eax, (1)),
rename (%ecx, eax, (2))]

[move ((4) ,after, (5))]

(1) movl -8(%ebp),l%ecx (1) movl -8(%ebp),| hebx (1) movl -8(%ebp),%ecx
Messes up use as (2) movl Yecx,l%eax (2) movl ,'/.eax (2) movl Y%ecx,’%eax
temp: Id r,0(r)? (3) cltd (3) cltd (3) cltd

(4) idivl -12(%ebp) (4) idivl -12(%ebp) 1 £5) movl Jeax,-4(%ebp)

(5) movl %eax,-4(%ebp) (5) movl Y%eax,-4(%ebp) (4) idivl -12(%ebp)

(a)

Figure 8: Detecting implicit arguments. (a) is the

(b)

original x86 sample. The (b) mutation will succeed, indicating that cltd,

(c)

idivl, and movl are independent of %ecx. The (¢) mutation will fall, since %eax is an implicit argument to idivl.

ward. A node is created for every operator and operand that
occurs explicitly in S. Instructions that were determined
to be redundant (Section 4.2) are ignored. Extra nodes
are created for all implicit input and output arguments
(Section 4.4). Finally, based on the information gathered
through live-range splitting (Section 4.3) and definition-use
analysis (Section 4.5), output register nodes can be con-
nected to the corresponding input nodes.

Note that once all samples have been converted into
data-flow graphs, we can easily determine the signatures of
individual instructions. This is a first and crucial step to-
wards a real understanding of the machine. From the graph
in Figure 10(d), for example, we can conclude that cltd
is a register-to-register instruction, and that the input and
output registers both have to be Jeax.

5 The Extractor

The purpose of the Extractor is to analyse from the data-
flow graphs and extract the function computed by each indi-
vidual operator and operand. In this section we will describe
two of the many techniques that can be employed: Graph
Matching which is a simple and fast approach that works
well in many cases, and Reverse Interpretation which is a
more general (and much slower) method.

5.1 Graph Matching

To extract the information of interest from the data-flow
graphs, we need to make the following observation: for a
binary arithmetic sample a = b @ c, the graph will have the
general structure shown in Figure 11(c). That is, the graph

will have paths P, and P, originating in @L1.b and @L1.c
and intersecting at some node P. Furthermore, there will be
paths P, and P, originating in P and @L1.a that intersect
at some node (). P, may be empty, while all other paths
will be non-empty.

P marks the point in the graph where @ is performed.
The paths P, and P, represent the code that loads the r-
values of b and c, respectively. Similarly, P, represents the
code that loads a’s l-value. @, being the point where the
paths computing b@® ¢ and a’s l-value meet, marks the point
where the value computed from b & c is stored in a.

(Does not run backwards)

5.2 \_Reverse Anterpretation

Graph Matching is fast and simple but it fails to analyze
some graphs. Particularly problematic are samples that per-
form multiplication by a constant, since these are often ex-
panded to sequences of shifts and adds. The method we will
describe next, on the other hand, is completely general but
suffers from a worst-case exponential time complexity.

In the following, we will take an interpreter I to be a
function

I : Sem X Prog X Envi, — Envey

Sem is a mapping from instructions to their semantic inter-
pretation, Env a mapping from memory locations, registers,
etc., to values, and Prog is the sequence of instructions to be
executed. The result of the interpretation is a new environ-
ment, with (possibly) new values in memory and registers.
The example in Figure 12(a) adds 5 to the value in memory
location 10 (M[10]) and stores the result in memory location

"draw it"

Combine micro ops to build up

effect of one instruction.
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Original Sample

[copy ((1) ,after, (1)),
rename (R1,R2,

[copy((1),after, (1)),

(17, N1 copy ((2) ,after, (1)),

(1) op, ---, Rin, (12 0Py -,
(2) 0Py .-+, RLV o VT ... (1)) 01 -,

(3) OPy -, RLU U7, ) O

(3) 0P ---
U s
(4) 0P4y ---, R17, (4) 0Py ---,

rename (R1,R2,((1°),(2?),(3)))]
(1) opy ---, RI”,

D
gén’ (1°) op, ---, R2?, -
R2 " (2°) 0P, ---, R2"P,

R{U °F U7 (2) 0Py .-+, R1VP, ...
R1Y ’ (3 0OPs ---, R2, ---
’ (4) 0Py ---, R1Y,

(a) (b) (c)

Figure 9: Computing definition/use information. The first

occurence of R1 in (a) is a definition (D), the last one a use (U).

The references to R1 in (2) and (3) could be either uses, or use-definitions (U/D). The mutation in (b) will succeed iff (2) is a

pure use. In (c) we assume that (b) failed, and hence (2) is

/* MUL @L1.a @L1.b @L1.c */
main(){
int b=313,c=109,a=b*c;
}
(1) 1w $9, 120($sp)
(2) 1w $10, 116($sp)
(3) mul $11, $9, $10
(4) sw $11, 124($sp)

(a)
/%

DIV @Li1.a @L1.b Q@L1.c
*/
main(){
int b,c,a=b/c;
}
movl -8(%ebp),hecx
movl Y%ecx,eax
cltd
idivl -12(%ebp)
movl Yeax,-4(%ebp)

(c)

a use-definition. (c) will succeed iff (3) is a pure use.

Figure 10: MIPS multiplication (a-b) and x86 division (c-d) samples and their corresponding data-flow graphs. Rectangular
boxes are operators, round-edged boxes are operands, and ovals represent source code variables. Note that, in (d), the implicit

arguments to cltd and idivl are explicit in the graph (they are drawn unshaded). Also note that the edges '/.eaxz — idivlg

and idivlg — '/.eaxz indicate that idivl reads and modifies jeax. All the graph drawings shown in this paper were generated
automatically as part of the documentation produced by the architecture discovery system.

A reverse interpreter R, on the other hand, is a function
that, given a program and an initial and final environment,

will return a semantic interpretation that turns the initial

likelihood of an instruction having a particular semantics)
can be used to implement an effective reverse interpreter.
The idea is simply to interpret each sample, choosing

environment into the final environment. R has the signature

R :: Semi, X Enviy, X Prog X Envoyy — Semgye.

In other words, R extends Sem;, with new semantic inter-
pretations, such that the program Prog transforms Envi, to
Enves. In the example in Figure 12(b) the reverse inter-
preter determines that the add instruction performs addi-
tion.

5.2.1 The Algorithm

We will devote the remainder of this section to a detailed dis-
cussion of reverse interpretation. Particularly, we will show
how a probabilistic search strategy (based on expressing the

(non-deterministically) new interpretations of the operators

and operands until every sample produces the required re-

sult. The reverse interpreter will start out with an empty

semantic mapping (Sems» = {}), and, on completion, will re-

turn a Sem,.: mapping each operator and addressing mode
_to a semantic interpretation.

The reverse interpreter has a small number of seman-
tic primitives (arithmetic, comparisons, logical operations,
loads, stores, etc.) to choose from. RISC-type instruc-
tions will map more or less directly into these primitives,
but they can be combined to model arbitrarily complex
machine instructions. For example, add13¢«aaa(a,b,c) =
store(a, add(load(b), load(c))) models the VAX add in-
struction, and madd:crrr(a,b,c) = add(a,mul(b,c)) the



<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil


Figure 11: Data-flow graphs after graph matching. (a) is MIPS multiplication, (b) is x86 division, and (d) is VAX addition.

0

In (a), P = mul3, Q = swg. Hence, on the MIPS, 1w is responsible for loading the r-values of b and ¢, mul performs

multiplication, and sw stores the result.

{add(z,y) = & + y; load(a) = M[a]; store(a,b) = M[a] + b},

(a) I | [store(20,add(load(10),5))],

{M[10] = 7,M[20] = 9}

{load(a) = M[a]; store(a,b) = M[a] « b},
(b) {M[10] = 7,M[20] = 9},

[store(20,add(load(10),5))],
{M[10] = 7,M[20] = 12}

{M[10] =7,
M[20] = 12}

{add(z,y) =z +y;
—  load(a) = Ma];
store(a,b) = M[a] + b}

Figure 12: (a) shows the result of an interpreter I evaluating a program [store(20, add(load(10),5))], given an environment
{M[10] = 7,M[20] = 9}. The result is a new environment in which memory location 20 has been updated. (b) shows the result
of a reverse interpretation. R is given the same program and the same initial and resulting environments as I. R also knows
the semantics of the load and store instructions. Based on this information, R will determine that in order to turn Envi,
into Enveus, the add instruction should have the semantics add(z,y) =z + y.

MIPS multiply-and-add. Figure 14 lists the most important
primitives, and in Section 5.2.3 we will discuss the choice of
primitives in detail.

The example in Figure 13 shows the reverse interpreta-
tion of the sample in Figure 10(a-b). The data-flow graph
has been converted into a list of instructions to be inter-
preted. In this example, we have already determined the
semantics of the sw and 1w instructions and the a.m,lkr’c reg-
ister+offset addressing mode. All that is left to do is to fix

ples will allow several conflicting interpretations. To see
this, let S="main(){int b=2,c=1,a=b*c;}' be a sample,
and let the multiplication instruction generated from S be
named mul. Given that Envi, = {b =2,c = 1} and Envews =
{b =2,c =1,a =2}, the reverse interpreter could reason-
ably conclude that mul(a,b) = a/b, or even mul(a,b) =
a—b+ 1. A wiser choice of initialization values (such as
b=34117,¢c=109), would avoid this problem. A_Monte Carlo
algorithm can help us choose wise initialization values:® gen-

the semantics of the mul instruction such that the result-

ing environment contains M[@L1.a] = 34117. The reverse
interpreter does this by enumerating all possible semantic
interpretations of mul, until one is found that produces the
correct Enveut .

Before we can arrive at an effective algorithm, there are
a number of issues that need to be resolved.

First of all, it should be clear there will be an infinite
number of valid semantic interpretations of each instruction.
In the example in Figure 13, mul;, ;. could get any one of
the semantics mul; . :(a,b) = a * b, mulyc:(a,b) = a *
b*1, ml,,.(a,b) = b> % a/b, etc. Since most machine
instructions have very simple semantics, we should strive
for the simplest (shortest) interpretations.

Secondly, there may be situations where a set of sam-

erate pairs of random numbers (a, b) until a pair is found for
which none of the interpreter primitives (or simple combi-
nations of the primitives) yield the same result.

Thirdly, the reverse interpreter might produce the wrong
result if its arithmetic is different from that of the target ar-
chitecture. We use enquire [16] to gather information about
word-sizes on the target machine, and simulate arithmetic
in the correct precision.

A further complication is how to handle addressing mode
calculations such as a1 + ami(_r,c + (120, $sp) which are
used in calculating variable addresses. These typically rely
on stack- or frame pointer registers which are initialized out-
side the sample. How is it possible for the interpreter to
determine that in Figure 13 @L1.a, @L1.b, and @L1.c are

SThanks to John Hamer for pointing this out.
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ll?"

{a.m;(_r’c(a,b) = loadAddr (add(a,b)),lu;a(a) = load(a),

SWeer,a(a,b) = store(a,b)},

{M[@L1.b] = 313, M[@L1.c] = 109},

T (@) a1 <+ amy,. < (120,%sp) T]
(2) 39 +« 1lurca — (a1)

R 3) a2 « am;(_r’c «— (116, $sp)

(4) $10 « 1lwrca +— (a2) ,
(5) $11 « mul,.. <« ($9,%10)
(6) as <« am. .. <+ (124,$sp)

1L (7) SWeera — ($11,a3)

{M[@QL1.b] = 313, M[QL1.c] = 109, M[@QL1.a] = 34117}

{am;_r’c(a,b) = loadAddr (add(a,b)),
lwra(a) = load(a),

SWecr,a(a,b) = store(a,b),
mul; . .(a,b) = mul(a,b)}

Figure 13: Reverse interpretation example. The data-flow graph in Figure 10(a) has been broken up into seven primitive
instructions, each one of the form result < operator < (arguments). am, .. represents the “register+offset” addressing
mode. The a;’s are “pseudo-registers” which hold the result of address calculations. To distinguish between instructions with
the same mnemonic but different semantics (such as Taddl $4,%ecx' and "addl -8(%ebp),%edx" on the x86), instructions are
indexed by their signatures. 1wy a, for example, takes an address as argument and returns a result in a register.

addressed as 124 + $sp, 120 + $sp, 116 + $sp, respectively,
for some unknown value of $sp? We handle this by initial-
izing every register not initialized by the sample itself to a
unique value ($sp <~ —g,,). The interpreter can easily de-
termine that a symbolic value 124+ —g,, must correspond to
the address @L1.a after having analyzed a couple of samples
such as 'main() {int a=1452;}".

However, the most difficult problem of all is how the
reverse interpreter can avoid combinatorial explosion. We
will address this issue next.

5.2.2 Guiding the Interpreter

Reverse interpretation is essentially an exhaustive search for
a workable semantics of the instruction set. Or, to put it
differently, we want the reverse interpreter to consider all
possible semantic interpretations of every operator and ad-
dressing mode encountered in the samples, and then choose
an interpretation that allows all samples to evaluate to their
expected results. As noted before, there will always be an
infinite number of such interpretations, and we want the
interpreter to favor the simpler ones.

Any number of heuristic search methods can be used
to implement the reverse interpreter. There is, however,
one complication. Many search algorithms require a fit-
ness function which evaluates the goodness of the current
search position, based on the results of the search so far.
This information is used to guide the direction of the con-
tinued search. Unfortunately, no such fitness function can
exist in our domain. To see this, let us again consider
the example interpretation in Figure 13. The interpreter
might guess that mul;. . .(a,b) = mul (a, add(100,b)), and,
since 313 % 100 + 109 = 31409 is close to the real solu-
tion (34117) the fitness function would give this solution
a high goodness value. Based on this information, the inter-
preter may continue along the same track, perhaps trying
mul;c ;r(a,b) = mul (a, add(110,b)).

This is clearly the wrong strategy. In fact. an unsuc-

cessful interpretation (one that fails to produce the correct
Enve.s) gives us no new information to help guide our further
search.

Fortunately, we can still do much better than a com-

pletely blind search. The current implementation is based

on a probabilistic best-first search. The idea is to assi
likelihood (or priority) to each possible semantic interpre-

tation of every operator and addressing mode. The inter-
preter will consider more likely interpretations (those that
have higher priority) before less likely ones. Note the differ-
ence between likelihoods and fitness functions: the former
are static priorities that can be computed before the search
starts, the latter are evaluated dynamically as the search
proceeds.

Let I be an instruction, S the set of samples in which T
occurs, and R a possible semantic interpretation of I. Then
the likelihood that I will have the interpretation R is

L(S,I,R) = c1 M(S,I, R)+c2 P(S, R)+csG(I, R)+caN(I, R)

where the ¢;’s are implementation specific weights and M,
P, G, and N are functions defined below.

M(S,I,R) This function represents information gathered
from successful (or even partially successful) graph
matchings. Let S be the MIPS multiplication sam-
Mre 11(a). After graph matching we know
that the operators and operands along the P, path will
be involved in loading the value of @L1.b. Therefore
M (S, 1w, load) will be very high. Similarly, since

the paths from @L1.b and @L1.c convene in the mulg
node, mul is highly likely to perform a multiplication,
and therefore M (S,mulrr -, mul) will also be high.

When available, this is the most accurate information
we can come by. It is therefore weighted highly in the
L(S,1,R) function.

P(S,R) The semantics of the sample itself is another impor-
tant source of information, particularly when combined
with an understanding of common code generation id-
ioms.

As an example, let S=main() {int b,c,a=b*c}" Then
we know that the corresponding assembly code sam-
ple_is much more likely to contain load, store, mul,
add, or shiftLeft instructions, than (say) a div or
a branch. Hence, for this example, P(S, mul) >
P(S,add) > P(S,branch).
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G(I,R) The signature of an instruction can provide some
clues as to the function it performs. For example, if I
takes an address argument it is quite likely to perform
a load or a store, and if it takes a label argument
it probably does a branch. Similarly, an instruction
(such as sweer,a in Figure 11(a) or add13ca a, in Fig-
ure 11(d)) that returns no result is likely to perform
(some sort of) store operation.

N(I,R) Finally, we take into account the name of the in-
struction. This is based on the observation that if I’s
mnemonic contains the string "add" or "plus" it is
more likely to perform (some sort of) addition than
(say) a left shift. Unfortunately, this information can
be highly inaccurate, so N(I, R) is given a low weight-
ing.

For many samples these heuristics are highly successful. Of-
ten the reverse interpreter will come up with the correct se-
mantic interpretation of an instruction after just one or two
tries. In fact, while previous versions of the system relied
exclusively on graph matching, the current implementation
now mostly uses matching to compute the M (S, I, R) func-
tion.

There are still complex samples for which the reverse
interpreter will not find a solution within a reasonable time.
In such cases a time-out function interrupts the interpreter
and the sample is discarded.

5.2.3 Primitive Instructions

The instruction primitives used by the reverse interpreter
largely determine the range of architectures that can be an-
alyzed. A comprehensive set of complex primitives might

map cleanly into a large number of instruction set archi-
tectures, but would slow down the reverse interpreter. A
smaller set of simple primitives would be easier for the re-
verse interpreter to deal with, but might fail to provide a
semantic interpretation for some instructions. As can be
seen from Figure 14, the current implementation employs a

small, RISC-like instruction set, which allows us to handle
current RISCs and CISCs. It lacks, among other things, con-
ditional expressions. This means that we currently cannot
analyze instructions like the VAX’s arithmetic shift (ash),
which shifts to the left if the count is positive, and to the
right otherwise.

In other words, the reverse interpreter will do well when

a
higher level than its built-in primitives. However, dealing
with micro-code-like or very complex instructions may well
be beyond its capabilities. The reason is our need to always
find the shortest semantic interpretation of every instruc-
tion. This means that when analyzing a complex instruction
we will have to consider a very large number of short (and
wrong) interpretations before we arrive at the longer, correct
one. Since the number of possible interpretations grows ex-
ponentially with the length of the semantic interpretation,
the reverse interpreter may quickly run out of space and
time.

Although very complex instructions are currently out of
favor, they were once very common. Consider, for exam-
ple, the VAX’s polynomial evaluation instruction "POLY"
or the HP 2100 [10] series computers’ “alter-skip-group.”
The latter contains 19 basic opcodes that can be combined
(up to 8 at a time) into very complex statements. For exam-
ple, the statement "CLA ,SEZ ,CME,SLA,INA" will clear A,

skip if E=0, complement E, skip if LSB(A)=0, and then
increment A.

6 The Synthesizer

The Synthesizer collects all the information gathered by pre-
vious phases and converts it into a BEG specification. If the
discovery system is part of a self-retargeting compiler, the
machine description would be fed directly into BEG and
the resulting code generator would be integrated into the
compiler. If the discovery system is used to speed up a

manual compiler retargeting effort the machine description

could first be refined by the compiler writer.

The main difficulty of this phase is that there may
not be a simple mapping from the intermediate code in-
structions emitted by the compiler into the machine code
instructions. As an example, consider a compiler which
emits an intermediate code instruction BranchEQ(a,b,L) =
IF a = b GOTO L. Using the primitives in Fig-
ure 14, the semantics of BranchEQ can be described as
brTrue (isEQ (compare (a1,a2)),L). This, incidentally, is
the exact semantics we derive for the MIPS’ beq instruc-
tion. Hence, in this case, generating the appropriate BEG
pattern matching rule is straight-forward.

However, on most other machines the BranchEQ instruc-
tion has to be expressed as a combination of two ma-
chine code instructions. For example, on the Alpha we
derive cmpeq(a,b) = 3sEQ(compare(a,b)) and bne(a,L) =
brTrue (a, L). To handle this problem, a special Synthesizer
phase (the Combiner) attempts to combine machine code
instructions to match the semantics of intermediate code
instructions. Again, we resort to exhaustive search. We
consider any combination of instructions to see if combin-
ing their semantics will result in the semantics of one of the
instructions in the compiler’s intermediate code.” Any such
combination results in a separate BEG pattern matching
rule. See figure Figure 15(d) for an example.

Depending on the complexity of the machine description
language, the Synthesizer may have to contend with other
problems as well. BEG, for example, has a powerful way
of describing the relationship between different addressing
modes, so called chain rules. A chain rule expresses under
which circumstances two addressing modes have the same
semantics. The chain-rules in Figure 15(b-c) express that
the SPARC'’s register+offset addressing mode is the same
as the register immediate addressing mode when the offset
is 0. To construct the chain-rules we consider the semantics
Sa and Sp of every pair of addressing modes A and B. For
each pair, we exhaustively assign small constants (such as 0
or 1) to the constant arguments of S4 and Sp, and we as-
sign registers with hardwired values (such as the SPARC’s
%g0) to Sa and Sp’s register arguments. If the resulting se-
mantics S and S are equal, we produce the corresponding
chain-rule.

7 Discussion and Summary

It is interesting to note that many of the techniques pre-
sented here have always been used manually by compiler

"This is somewhat akin to Massalin’s [14] superoptimizer. The
difference is that the superoptimizer attempts to find a smallest pro-
gram, whereas the Combiner looks for any combination of instruc-
tions with the required behavior. The back-end generator is then
responsible for selecting the best (cheapest) instruction sequence at
compile-time.
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Must map these to compiler IR right?

Perhaps better to procompute to

some length (57?) since only 32 o

SO.
SIGNATURE | SEMANTICS | COMMENTS
add (IxI)—1 add(a,b) =a+b Also sub, mul, div, and mod.
abs T —1 abs(a) =|a| Also neg, not and move.

and (IxI)—1 and(a,b) =aAb

Also or, zor, shiftLeft, and shiftRight.

ignorel (Ix1I)—1 | ignorel(a,b) =0

Ignore first argument. Also ignore2.

compare (Ix1)— C

compare (a,b) = (a < b,a =b,a > b)

Return the result of comparing a and b. Example:
compare (5,7) = (T,F, F).

isLE C— B isLE(a) = a # (-, ., T)

Return true if a represents a less-than-or-equal
condition. Also zsE@, isLT, etc.

brTrue (B x L) brTrue(a,b) = if a then PC < b

Branch on true. Also brFalse.

nop

No operation.

load A — 1 load (a) = M[a]

Load an integer from memory.

store (A xT) store(a,b) =M[a] < b

Store an integer into memory.

loadLit Lit — 1 loadLit (a) = a

Load an integer literal.

loaddddr Addr — A | loadAdddr(a) =a

Load a memory address.

Figure 14: Reverse interpreter primitives. Available types are Int (I), Bool (B), Address (A), Label (L), and Condition
Code (C). M[] is the memory. T is True and F is False. C is an array of booleans representing the outcome of a comparison.
While the current implementation only handles integer instructions, future versions will handle all standard C types. Hence
the reverse interpreter will have to be extended with the corresponding primitives.

NONTERMINALS AddrMode4 ADRMODE

(a)

COND_ATTRIBUTES (int4_1 INTEGER) (reg4_1 Register);
(b) RULE Register.al -> AddrMode4.res;
COST 0; EVAL{res.int4_1 := 0;} EMIT{res.reg4_1 := al;}
(©) RULE AddrMode4.al -> Register.res;
¢ CONDITION{(al.int4_1 = 0)}; COST O; EMIT{res := al.regé_i;}
RULE BranchEQ Label.al Register.a2 IntConstant.a3 ;
(d) CONDITION{(a3.val>=-4096) AND (a3.val<=4095)};
COST 2;
EMIT{print "cmp", a2 "," a3.val; print "be", "L" al.lab; print "nop"}

RULE Mult Register.a3(Reg_o0) Register.a4(Reg_ol) -> Register.res(Reg_o0);

COST 15; TARGET a3;

()

EMIT{print "call .mul, 2"; print "nop"}

Figure 15: Part of a BEG specification for the SPARC, generated automatically by the architecture discovery system. (a)

shows the declaration of the “register+offset” addressing mode.
a “register+offset” addressing mode into a register (when the offset is 0), and vice versa.

(b) and (c) are chain-rules that describe how to turn
In (d) a comparison and a

branch instruction have been combined to match the semantics of the intermediate code instruction BranchER. Note how the
architecture discovery system has detected that the integer argument to the cmp instruction has a limited range. (e), finally,
describes the SPARC’s software multiplication routine ".mul". Note that we have discovered the implicit input (%00 and %o01)

and output argument (%00) to the call instruction.

writers. The fastest way to learn about code-generation
techniques for a new architecture is to compile some small C
or FORTRAN program and examine the resulting assembly
code. The architecture discovery unit automates this task.

One of the major sources of problems when writing ma-
chine descriptions by hand is that the documentation de-
scribing the ISA, the implementation of the ISA, the as-
sembler syntax, etc. is notoriously unreliable. Our system
bypasses these problems by dealing directly with the hard-
ware and system software. Furthermore, our system makes
it cheap and easy to keep machine descriptions up to date
with hardware and system software updates.

We will conclude this paper with a discussion of the gen-
erality, completeness, and implementation status of the ar-
chitecture discovery system.

7.1  Generality

What range of architectures can an architecture discovery
system possibly support? Under what circumstances might
it fail?

As we have seen, our analyzer consists of three major
modules: the Lexer, the Preprocessor, and the Extractor.
Each of them may fail when attempting to analyze a partic-
ular architecture. The Lexer assumes a relatively standard
assembly language, and will, of course, fail for unusual lan-
guages such as the one used for the Tera. The Extractor
may fail to analyze instructions with very complex seman-
tics, since the reverse interpreter (being worst-case exponen-
tial) may simply “run out of time.”

The Preprocessor’s task is essentially to determine how
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pairs of instructions communicate with each other within a
sample. Should it fail to do so the data-flow graph cannot
be built, and that sample cannot be further analyzed. There
are basically four different ways for two instructions A and
B to communicate:

Explicit registers A assigns a value to a general purpose
register R. B reads this value.

Implicit registers A assigns a value to a general purpose
register R which is hardwired into the instruction. B
reads this value.

Hidden registers A and B communicate by means of a
special purpose register which is “hidden” within the
CPU and not otherwise available to the user. Examples
include condition codes and the 1o and hi registers on
the MIPS.

Memory A and B communicate via the stack or main
memory. Examples include stack-machines such as the
Burroughs B6700.

The current implementation handles the first two, some spe-
cial cases (such as condition codes) of the third, but not the
last. For this reason, we are not currently able to analyze
extreme stack-machines such as the Burroughs B6700.

Furthermore, there is no guarantee that either CCCG
or SDCG will work for all architecture/compiler/language
combinations. We have already seen that some C compil-
ers will be unsafe as CCCG back-ends for languages with
garbage collection. SDCG-based compilers will also fail if
a new ISA has features unanticipated when the back-end
generator was designed. Version 1 of BEG, for example, did
not support the passing of actual parameters in registers,
and hence was unable to generate code for RISC machines.
Version 1.5 rectified this.

7.1.1 Completeness and Code Quality

The quality of the code generated by an SRCG compiler will
depend on a number of things:

The quality of the C compiler. Obviously, if the C
compiler does not generate a particular instruction,
then we will never find out about it.

The semantic gap between C and the target language.

The architecture may have instructions that directly
support a particular target language feature, such as
exceptions or statically nested procedures. Since C
lacks these features, the C compiler will never produce
the corresponding instructions, and no SRCG compiler
will be able to make use of them. Note that this is
no different from a CCCG-based compiler which will
have to synthesize its own static links, exceptions, etc.
from C primitives.

The completeness of the sample set. There may be
instructions which are part of the C compiler’s vocab-
ulary, but which it does not generate for any of our
simple samples. Consider, for example, an architec-
ture with long and short branch instructions. Since
our branching samples are currently very small (typi-
cally, main() {int a,b,c; if (b<c) a=9;}"), it is un-
likely that a C compiler would ever produce any long
branches.

The power of the architecture discovery system. If
a particular sample is too complex for us to analyze,
we will fail to discover instructions present only in
that sample.

The quality of the back-end generator. A  back-end
generated by BEG will perform no optimization, not
even local common subexpression elimination. Re-
gardless of the quality of the machine descriptions we
produce, the code generated by a BEG back-end will
not be comparable to that produced by a production
compiler.

It is important to note that we are not trying to reverse
engineer the C compiler’s code generator. This is a task that
would most likely be beyond automation. In fact, if the C
compiler’s back-end and the back-end generator use different
code generation algorithms, the codes they generate may
bear no resemblance to each other.

7.2 Implementation Status and Future Work

The current version of the prototype implementation of the
architecture discover system is general enough to be able to
discover the instruction sets of common RISC and CISC ar-
chitectures. Tt has been tested on the integer® instruction
sets of five machines (Sun SPARC, Digital Alpha, MIPS,
DEC VAX, and Intel x86), and h

(almost) correct machine specifications for the BEG back-
_end generator. The areas in which the system is deficient
relate to modules that are not yet implemented. For exam-
ple, we currently do not test for registers with hardwired
values (register %g0 is always 0 on the Sparc), and so the
BEG specification fails to indicate that such registers are
not available for allocation.

In this paper we have described algorithms which deduce
the register sets, addressing modes, and instruction sets of
a new architecture. Qbviously, there is much additional in-
formation needed to make a complete compiler, information
which the algorithms outlined here are not designed to ob-
tain. As an example, consider the symbol table information
needed by symbolic debuggers(**.stabs" entries).

Furthermore, to generate code for a procedure we need
to know which information needs to go in the procedure
header and footer. Typically, the header will contain in-
structions or directives that reserve space on the runtime
stack for new activation records. To deduce this information
we can simply observe the differences between the assembly
code generated from a sequence of increasingly more com-
plex procedure declarations. For example, compiling "int
PO{}, "nt PO{int a;}', int PO {int a,b; ], etc., will
result in procedure headers which only differ in the amount
of stack space allocated for activation records.

Unfortunately, things can get more complicated. On the

VAX, for example, the procedure header must contain a
register mask containing the registers that are used by the
procedure and which need to be saved on procedure entry.
Even if the architecture discover system were able to deduce
these requirements, BEG has no provision for expressing
them.

8 At this point we are targeting integer instruction sets exclusively,
since they generally exhibit more interesting idiosyncrasies than float-
ing point instruction sets.
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7.2.1 Hardware Analysis

There has been much work in the past on automati-
cally determining the runtime characteristics of an archi-
tecture implementation. This information can be used to
guide a compiler’s code generation and optimization passes.
Baker [1] d i hni (“scheduli 1 h self.
si ion”), in which a compiler determines a good sched-
ule for a basic block by executing and timing a few alterna-

tive instruction sequences. Rumor [12] has it that SunSoft

uses a compiler-construction time variant of this technique
to tune their schedulers. The idea is to derive a good sched-
uling policy by running and timing a suite of benchmarks.
Each benchmark is run several times, each time with a dif-
ferent set of scheduling options, until a good set of options
has been found.

In a similar vein, McVoy’s lmbench [15] program mea-
sures the sizes of instruction and data caches. This informa-
tion can be used to guide optimizations that increase code
size, such as inline expansion and loop unrolling.

Finally, Pemberton’s enquire [16] program (which de-
termines endian-ness and sizes and alignment of data types)
is already in use by compiler writers. Parts of enquire have
been included into our system.

It is our intention to include more of these techniques in
future versions of the architecture discovery system. At the
present time only crude instruction timings are performed.
More detailed information would not be useful at this point,
since BEG would be unable to make use of it.

7.2.2 Current Status

The system is under active development. The implemen-
tation currently consists of 10000 non-blank, non-comment
lines of Prolog, 900 lines of shell scripts (mostly for com-
municating with the machine being analyzed), 1500 lines of
AWK (for generating the C code samples and parsing the
resulting assembly code), and 800 lines of makefiles (to in-
tegrate the different phases).
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