
Reverse Interpretation + Mutation Analysis = Automatic RetargetingChristian S. CollbergDepartment of Computer ScienceThe University of AucklandPrivate Bag 92019Auckland, New Zealand.collberg@cs.auckland.ac.nzAbstractThere are three popular methods for constructing highlyretargetable compilers: (1) the compiler emits abstract ma-chine code which is interpreted at run-time, (2) the compileremits C code which is subsequently compiled to machinecode by the native C compiler, or (3) the compiler's code-generator is generated by a back-end generator from a formalmachine description produced by the compiler writer.These methods incur high costs at run-time, compile-time, or compiler-construction time, respectively.In this paper we will describe a novel method whichpromises to signi�cantly reduce the e�ort required to retar-get a compiler to a new architecture, while at the same timeproducing fast and e�ective compilers. The basic idea is touse the native C compiler at compiler construction time todiscover architectural features of the new architecture. Fromthis information a formal machine description is produced.Given this machine description, a native code-generator canbe generated by a back-end generator such as BEG or burg.A prototype Automatic Architecture Discovery Unit hasbeen implemented. The current version is general enough toproduce machine descriptions for the integer instruction setsof common RISC and CISC architectures such as the SunSPARC, Digital Alpha, MIPS, DEC VAX, and Intel x86.The tool is completely automatic and requires minimal inputfrom the user: principally, the user needs to provide theinternet address of the target machine and the command-lines by which the C compiler, assembler, and linker areinvoked.1 IntroductionAn important aspect of a compiler implementation is its re-targetability. For example, a new programming languagewhose compiler can be quickly retargeted to new hard-ware/operating system combinations is more likely to gainwidespread acceptance than a language whose compiler re-quires extensive retargeting e�ort.In this paper we will brie
y review the problems as-sociated with two popular approaches to building retar-getable compilers (C Code Code Generation (CCCG), and

Speci�cation-Driven Code Generation (SDCG)), and thenpropose a new method (Self-Retargeting Code Generation(SRCG)) which overcomes these problems.1.1 C Code Code GenerationThe back-end of a CCCG compiler generates C code whichis compiled by the native C compiler. If care has been takento produce portable C code, then targeting a new archi-tecture requires no further action from the compiler writer.Furthermore, any improvement to the native C compiler'scode generation and optimization phases will automaticallybene�t the compiler. A number of compilers have achievedportability through CCCG. Examples include early versionsof the SRC Modula-3 compiler [2] and the ISE Ei�el com-piler [7].Unfortunately, experience has shown that generatingtruly portable C code is much more di�cult than it mightseem. Not only is it necessary to handle architecture andoperating-system speci�c di�erences such as word-size andalignment, but also the idiosyncrasies of the C compilersthemselves. Machine-generated C code will often exercisethe C compiler more than code written by human program-mers, and is therefore more likely to expose hidden problemsin the code-generator and optimizer. Other potential prob-lems are the speed of compilation1 and the fact that theC compiler's optimizer (having been targeted at code pro-duced by humans) may be ill equipped to optimize the codeemitted by our compiler.Further complications arise if there is a large semanticgap between the source language and C. For example, ifthere is no clean mapping from the source language's typesto C's type, the CCCG compiled program will be very di�-cult to debug.CCCG-based compilers for languages supporting garbagecollection face even more di�cult problems. Many collec-tion algorithms assume that there will always be a pointerto the beginning of every dynamically allocated object, arequirement which is violated by some optimizing C com-pilers. Under certain circumstances this will result in liveobjects being collected.Other compelling arguments against the use of C as anintermediate language can be found in [3].1In some CCCG compilers the most expensive part of compila-tion is compiling the generated C code. For this reason both SRCModula-3 and ISE Ei�el are moving away from CCCG. ISE Ei�el nowuses a bytecode interpreter for fast turn-around time and reserves theCCCG-based compiler for �nal code generation. SRC Modula-3 nowsupports at least two SDCG back-ends, based on gcc and burg.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
!

<iAnnotate iPad User>
FreeText
Cs343, Adv compilers
Spring 2011
Engler

1.2 Speci�cation-Driven Code GenerationThe back-end of a SDCG compiler generates intermedi-ate code which is transformed to machine code by aspeci�cation-driven code generator. The main disadvantageis that retargeting becomes a much more arduous process,since a new speci�cation has to be written for each new ar-chitecture. A gcc [17] machine speci�cation, for example,can be several thousand lines long. Popular back-end gener-ators such as BEG [6] and burg [9] require detailed descrip-tions of the architecture's register set and register classes, aswell as a set of pattern-matching rules that provide a map-ping between the intermediate code and the instruction set.See Figure 15 for some example rules taken from a BEGmachine description.Writing correct machine speci�cations can be a di�culttask in itself. This can be seen by browsing through gcc'smachine descriptions. The programmers writing these spec-i�cations experienced several di�erent kinds of problems:Documentation/Software Errors/Omissions Themost serious and common problems seem to stemfrom documentation being out of sync with the actualhardware/software implementation. Examples: \. . .the manual says that the opcodes are named movsx. . . ,but the assembler . . . does not accept that. (i386)"\WARNING! There is a small i860 hardware limitation(bug?) which we may run up against . . . we must avoidusing an `addu' instruction to perform such comparisonsbecause . . . This fact is documented in a footnote onpage 7-10 of the . . . Manual (i860)."Lack of Understanding of the Architecture Evenwith the access to manuals, some speci�cation writersseemed uncertain of exactly which constructs werelegal. Examples: \Is this number right? (mips)," \Canthis ever happen on i386? (i386)," \Will divxu alwayswork here? (i386)."Hardware/Software Updates Often, updates to thehardware or systems software are not immediately re-
ected by updates in the machine speci�cation. Exam-ple: \This has not been updated since version 1. It iscertainly wrong. (ns32k)."Lack of Time Sometimes the programmer knew whatneeded to be done, but simply did not have the time toimplement the changes. Example: \This INSV patternis wrong. It should . . . Fixing this is more work than wecare to do for the moment, because it means most of theabove patterns would need to be rewritten, . . . (HitachiH8/300)."Note that none of these comments are gcc speci�c. Rather,they express universal problems of writing and maintaininga formal machine speci�cation, regardless of which machine-description language/back-end generator is being targeted.1.3 Self-Retargeting Code GenerationIn this paper we will propose a new approach to the designof retargetable compilers which combines the advantages ofthe two methods outlined above, while avoiding most of theirdrawbacks. The basic idea is to use the native C compilerto discover architectural features of the new target machine,and then to use that information to automatically producea speci�cation suitable for input to a back-end generator.

We will refer to this method as Self-Retargeting Code Gen-eration (SRCG).More speci�cally, our system generates a number of smallC programs2 which are compiled to assembly-code by thenative C compiler. We will refer to these codes collectively assamples, and individually as C code samples and assembly-code samples.The assembly-code samples are analyzed to extract in-formation regarding the instruction set, the register set andregister classes, the procedure calling convention, availableaddressing modes, and the sizes and alignment constraintsof available data types.The primary application of the architecture discoveryunit is to aid and speed up manual retargeting. Although acomplete analysis of a new architecture can take a long time(several hours, depending on the speed of the host and tar-get systems and the link between them), it is still 1-2 ordersof magnitude faster than manual retargeting.However, with the advent of SRCG it will also becomepossible to build self-retargeting compilers, i.e. compilersthat can automatically adapt themselves to produce nativecode for any architecture. Figure 1 shows the structure ofsuch a compiler ac for some language \A". Originally de-signed to produce code for architectures A1 and A2, ac isable to retarget itself to the A3 architecture. The user onlyneeds to supply the Internet address of an A3 machine andthe command lines by which the C compiler, assembler, andlinker are invoked.The architecture discovery package will have other po-tential uses as well. For example, machine-independent toolsfor editing of executables (EEL [13]), decompilation (Ci-fuentes [4]), and dynamic compilation (DCG [8]) all needaccess to architectural descriptions, and their retargetingwould be simpli�ed by automatic architecture discovery.2 System Overview and RequirementsFor a system like this to be truly useful it must have few re-quirements | of its users as well as of the target machines.The prototype implementation has been designed to be asautomatic as possible, to require as little user input as pos-sible, and to require the target system to provide as few andsimple tools as possible:1. We require a user to provide the internet address of thetarget machine and the command-lines by which the Ccompiler, assembler, and linker are invoked. For a widerange of machines all other information is deduced bythe system itself, without further user interaction.2. We require the target machine to provide an assembly-code producing C compiler, an assembler which
agsillegal assembly instructions,3 a linker, and a remoteexecution facility such as rsh. The C compiler is usedto provide assembly code samples for us to analyze;the assembler is used to deduce the syntax of the as-sembly language; and the remote execution facility isused for communication between the development andtarget machines.2Obviously, other widely available languages such as FORTRANwill do equally well.3The manner in which errors are reported is unimportant; assem-blers which simply crash on the �rst error are quite acceptable forour purposes.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Seems like adt misses
such context issues.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Oracle: no false positive, no false negative.

Back-end forarchitecture A1BEG back-endgenerator Compiler front-endBack-end forarchitecture A2Automatic ArchitectureDiscovery System Run BEGBEG specificationfor A3Back-end for A3The "ac"compiler DiscoverA3Integrateinto acFigure 1: The structure of a self-retargeting compiler ac for some language A. The back-end generator BEG and thearchitecture discovery system are ntegrated into ac. The user can tell ac to retarget itself to a new architecture A3 by givingthe Internet address of an A3 machine and the command lines by which the C compiler, assembler, and linker are invoked:ac -retarget -ARCH A3 -HOST kea.cs.auckland.ac.nz -CC 'cc -S -g -o %O %I' -AS 'as -o %O %I' -LD � � �.If these requirements have been ful�lled, the architecturediscovery system will produce a BEG machine descriptioncompletely autonomously.The architecture discovery system consists of �ve ma-jor components (see Figure 2). The Generator generates Ccode programs and compiles them to assembly-code on thetarget machine. The Lexer extracts and tokenizes relevantinstructions (i.e. corresponding to the C statements in thesample) from the assembly-code. The Preprocessor buildsa data-
ow graph from each sample. The Extractor usesthis graph to extract the semantics of individual instructionsand addressing modes. The Synthesizer, �nally, gathers thecollected information together and produces a machine de-scription, in our case for the BEG back-end generator.3 The Generator and LexerThe Generator produces a large number of simple Ccode samples. Samples may contain arithmetic and logi-cal operations pmain()fint b=5,c=6,a=b+c;gq, conditionalspmain()fint b=5,c=6,a=7; if(b<c)a=8;gq, and procedurecalls pmain()fint b=5,a; a=P(b);gq. We would prefer togenerate a \minimal" set of samples, the smallest set suchthat the resulting assembly code samples would be easy toanalyze and would contain all the instructions produced bythe compiler. Unfortunately, we cannot know whether a par-ticular sample will produce interesting code combinations fora particular machine until we have tried to analyze it. Wemust therefore produce as many simple samples as possible.For example, for subtraction we generate: pa=b-cq, pa=a-bq, pa=b-aq, pa=a-aq, pa=b-bq, pa=7-bq, pa=b-7q, pa=7-aq, andpa=a-7q. This means that we will be left with a large numberof samples, typically around 150 for each numeric type sup-ported by the hardware. The samples are created by simplyinstantiating a small number of templates parameterized ontype (int,
oat,etc.) and operation (+,-,etc.).The samples are compiled to assembly code by the nativeC compiler and the Lexer extracts the instructions relevantto our analysis. This is non-trivial, since the relevant in-structions often only make up a small fraction of the onesproduced by the C compiler.Fortunately, it is possible to design the C code samplesto make it easy to extract the relevant instructions andto minimize the compiler's opportunities for optimizationsthat could complicate our analyses. In Figure 3 a sepa-rately compiled procedure Init initializes the variables a,b, and c, but hides the initialization values from the com-piler to prevent it from performing constant propagation.The main routine contains three conditional jumps to twolabels Begin and End, immediately preceding and follow-

ing the statement a=b+c. The compiler will not be able tooptimize these jumps away since they depend on variableshidden within Init. Two assembly-code labels correspond-ing to Begin and End will e�ectively delimit the instructionsof interest. These labels will be easy to identify since theyeach must be referenced at least three times. The printfstatement ensures that a dead code elimination optimizationwill not remove the assignment to a.3.1 Tokenizing the InputBefore we can start parsing the assembly code samples, wemust try to discover as much as possible about the syntaxaccepted by the assembler. Fortunately, most modern as-sembly languages seem to be variants of a \standard" nota-tion: there is at most one instruction per line; each instruc-tion consists of an optional label, an operator, and a listof comma-separated arguments; integer literals are pre�xedby their base; comments extend from a special comment-character to the end of the line; etc.We use two fully automated techniques for discoveringthe details of a particular assembler: we can textually scanthe assembly code produced by the C compiler or we candraw conclusions based on whether a particular assemblyprogram is accepted or rejected by the assembler. For exam-ple, to discover the syntax of integer literals (Which basesare accepted? Which pre�xes do the di�erent bases use?Are upper, lower, and/or mixed case hexadecimal literalsaccepted?) we compile pmain()fint a=1235;gq and scan theresulting assembly code for the constant 1235, in all the com-mon bases. To discover the comment-character accepted bythe assembler we start out with the assembly code producedfrom pmain()fgq, add an obviously erroneous line precededby a suspected comment character, and submit it to theassembler for acceptance or rejection.These techniques can be used for a number of similartasks. In particular, we discover the syntax of addressingmodes and registers, and the types of arguments (literals,labels, registers, memory references) each operator can take.We also use assembler error analysis to discover the acceptedranges of integer immediate operands. On the SPARC, forexample, we would detect that the add instruction's imme-diate operand is restricted to [-4096,4095].Some assembly languages can be quite exotic. TheTera[5], for example, uses a variant of Scheme as its as-sembly language. In such cases our automated techniqueswill not be su�cient, and we require the user to provide atranslator into a more standard notation.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Why sufficient?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Assume no whole
program analysis

$9, 120($sp)lw $sp, 128sub $10, 116($sp)lw $11, $9, $10mul $11, 124($sp)sw $sp, 128add
........align 2
.......Syn-the-size i([reg/2]<-mul<-[reg/2,reg/3],e(*, int, [e(reg,int,[arg(1)]),e(reg,int,[arg(2)])])). Ex-tract

a=b*c;
Reg.b Reg.c -> Reg.a;RULE MultCOST 1;gEMIT fprintf("mul",...);

$10reg; 116lit($spreg)lw $11reg; $9reg; $10regmul $11reg; 124lit($spreg)swlwLexCompile Preprocess(e)
(c)(b)

(d)
(a)

(f)
$9reg; 120lit($spreg)

$911120($sp)21 $1012116($sp)22 $1113$923$1033$1114124($sp)24
lw01lw02mul03sw04@L1.a11

@L1.b21@L1.c31

Generatemain() fg int a,b,c;
Figure 2: An overview of the major components of the architecture discovery system. The Generator produces a large numberof small C programs (a) and compiles them to assembly on the target machine. The Lexer analyzes the raw assembly code(b) and extracts and tokenizes the instructions that are relevant to our further analyses (c). The Preprocessor deduces thesignature of all instructions, and builds a data-
ow graph (d) from each sample. The semantics of individual instructions (e)are deduced from this graph, and from this information, �nally, a complete BEG speci�cation (f) is built./* init.h */externint z1,z2,z3,z4,z5,z6;externvoid Init();/* init.c */int z1,z2,z3,z4,z5,z6;void Init(n,o,p)int *n,*o,*p;fz1=z2=z3=1;z4=z5=z6=1;*n=-1;*o=313; *p=109;g

/*ADD @L1.a @L1.b @L1.c*/#include "init.h"main () fint a, b, c;Init(&a, &b, &c);if (z1) goto Begin;if (z2) goto End;if (z3) goto Begin;if (z4) goto End;if (z5) goto Begin;if (z6) goto End;Begin:a = b + c;End:printf("%inn", a);exit(0);g

tstl z1jeql L1jbr L2L1:tstl z2jeql L3jbr L4L3:tstl z3jeql L5jbr L2L5:tstl z4jeql L6jbr L4L6:tstl z5jeql L7jbr L2L7:tstl z6jeql L2jbr L4L2:addl3 -12(fp),-8(fp),-4(fp)L4:(a) (b) (c)Figure 3: A C Code sample and the resulting assembly-code sample for the VAX. The relevant instruction (addl3) can beeasily found since it is delimited by labels L2 and L4, corresponding to Begin and End, respectively.4 The PreprocessorThe samples produced by the lexical phase may contain ir-regularities that will make them di�cult to analyze directly.Some problems may be due to the idiosyncrasies of the archi-tecture, some due to the code generation and optimizationalgorithms used by the C compiler. It is the task of the Pre-processor to identify any problems and convert each sampleinto a standard form (a data-
ow graph) which can serve asthe basis for further analysis.The data-
ow graph makes explicit the exact
ow of in-formation between individual instructions in a sample. This
means that, for every instruction in every sample, we needto know where it takes its arguments and where it depositsits result(s). There are several major sources of confusion,some of which are illustrated in Figure 4.For example, an instruction operand that does not ap-pear explicitly in the assembly code, but is hardwired intothe instruction itself, is called an implicit argument. Theyoccur frequently on older architectures (on the x86, cltd(Figure 8) takes its input argument and delivers its resultin register %eax), as well as more recent ones when proce-dure call arguments are passed in registers (Figure 4(a)). Ifwe cannot identify implicit arguments we obviously cannot

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Not needed just for scan.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
What assumptions
about how labels
emitted?

main()fint b,c,a=b*c;g main()fint b,c,a=P(b,c);g main()fint a=P(34);g main()fint a=503<<a;gld [%fp+-0x8],%o0ld [%fp+-0xc],%o1call .mul,2nopst %o0,[%fp+-0x4] movl -12(%ebp),%eaxpushl %eaxmovl -8(%ebp),%eaxpushl %eaxcall Paddl $8,%espmovl %eax,%eaxmovl %eax,-4(%ebp) call P,1mov 34,%o0st %o0,[%fp-4] ldq $1, 184($sp)addl $1, 0, $2ldil $3, 503sll $3, $2, $4addl $4, 0, $4stq $4, 184($sp)(a) (b) (c) (d)Figure 4: Examples of compiler- and architecture-induced irregularities that the Preprocessor must deal with. On the SPARC,procedure actuals are passed in registers %o0, %o1, etc. Hence these are implicit input arguments to the call instruction in(a). In (b), the x86 C compiler is using register %eax for three independent tasks: to push b, to push c, and to extract theresult of the function call. The SPARC mov instruction in (c) is in the call instruction's delay slot, and is hence executedbefore the call. In (d), �nally, the Alpha C compiler generated a redundant instruction paddl $4, 0, $4q.accurately describe the
ow of information in the samples.As shown in Figure 4(b), a sample may contain severaldistinct uses of the same register. Again, we need to beable to detect such register reuse or the
ow of informationwithin the sample can not be identi�ed.4.1 Mutation AnalysisStatic analysis of individual samples is not su�cient to ac-curately detect and repair irregularities such as the onesshown in Figure 4. Instead we use a novel dynamic tech-nique (called Mutation Analysis) which compares the exe-cution result of an original sample with one that has beenslightly changed:
resultCompile &Execute AssemblyCode Sample MutatedSampleical? Assemble& ExecuteresultC codesample MutateCompile ident-Figure 5 lists the available mutations.4.2 Eliminating Redundant InstructionsTo illustrate this idea we will consider a trivial, but ex-tremely useful, analysis, redundant instruction elimination.An instruction is removed from a sample and the modi�edsample is assembled, linked, and executed on the target ma-chine. If the mutated sample produces the same result as theoriginal one, the instruction is removed permanently. Thisprocess is repeated for every instruction of every sample.Even for trivial mutation like this, we must take spe-cial care for the mutation not to succeed by chance. Asillustrated in Figure 6, countering random successes ofteninvolves judicious use of register clobbering.The result of these mutations is a new set of simpli�edsamples, where redundant instructions (such as pmove R1,R1q, pnopq, padd R1, 0, R1q) have been eliminated. Thesesamples will be easier for the algorithms in Section 5 toanalyze. They will also be less confusing to further mutationanalyses.We will next consider three more profound preprocessingtasks (Live-Range Splitting, Implicit Argument Detection,and Register De�nition/Use Computation) in detail.

4.3 Splitting Register Live-RangesSome samples (such as Figure 4(b)) will contain several un-related references to the same register. To allow furtheranalysis, we need to split such register references into dis-tinct regions. Figure 7 shows how we can use the renameand clobber mutations to construct regions that contain thesmallest set of registers that can be renamed without chang-ing the semantics of the sample. Regions are grown back-wards, starting with the last use of a register, and continuinguntil the region also contains the corresponding de�nition ofthat register. To make the test completely reliable the newregister is clobbered just prior to the proposed region, andeach mutated sample is run several times with di�erent clob-bering values.4.4 Detecting Implicit ArgumentsDetecting implicit arguments is complicated by the fact thatsome instructions have a variable number of implicit inputarguments (cf. call in Figure 4(a,c)), some have a vari-able number of implicit output arguments (the x86's idivlreturns the quotient in %eax and the remainder in %edx),and some take implicit arguments that are both input andoutput.The only information we get from running a mutatedsample is whether it produces the same result as the origi-nal one. Therefore all our mutations must be \correctnesspreserving", in the sense that unless there is something spe-cial about the sample (such as the presence of an implicitargument), the mutation should not a�ect the result.So, for example, it should be legal to move an instructionI2 before an instruction I1 as long as they (and any inter-mediate instructions) do not have any registers in common.4Therefore the mutation in Figure 8(c) should succeed, whichit does not, since %eax is an implicit argument to idivl.The algorithm runs in two steps. We �rst attempt toprove that, for each operator O and each register R, O isindependent of R, i.e. R is not an implicit argument of O(See Figure 8(b)). For those operator/register-pairs thatfail the �rst step, we use move mutations to show that theregisters are actually implicit arguments (Figure 8(c)).4Note that while this statement does not hold for arbitrary codes(where, for example, aliasing may be present), it does hold for oursimple samples.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"run it" - a bit like superoptimizer

<iAnnotate iPad User>
FreeText
CPU = oracle. No false pos, but can have false neg (accept when not equiv)

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"when can this make mistake?" (consider no interlocks, undefined behavior or even branches)

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"does forwards work?"

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Enough?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"needed?"

<iAnnotate iPad User>
Pencil

(1) OP1 A11, R1, A31(2) OP2 A12, A22, A32(3) OP3 R1, A23, A33Original sample (2) OP2 A12, A22, A32(1) OP1 A11, R1, A31(3) OP3 R1, A23, A33 (1) OP1 A11, R1, A31(2) OP2 A12, A22, A32MOV -13,R1(3) OP3 R1, A23, A33 (1) OP1 A11, R1, A31(2) OP2 A12, A22, A32(3) OP3 R1, A23, A33(1') OP1 A11, R1, A31move((1),after,(2)) clobber(R1,after,(2)) copy((1),after,(3))(1) OP1 A11, R1, A31(3) OP3 R1, A23, A33 (1) OP1 A11, R1, A31(2) OP2 A12, A22, A32(3) OP3 R2, A23, A33 (1) OP1 A11, R3, A31(2) OP2 A12, A22, A32(3) OP3 R3, A23, A33delete((2)) rename(R1,R2,(3)) renameAll(R1, R3)Figure 5: This table lists the available mutations: we can move, copy, and delete instructions, and we can renameand clobber (overwrite) registers. The Aji s are operands not a�ected by the mutations. To avoid a mutation succeeding(producing the same value as the original sample) by chance, we always try several variants of the same mutation. A mutationis successful only if all variants succeed. Two variants may, for example, di�er in the values used to clobber a register, or thenew register name chosen for a rename mutation.Original Sample [delete((1))] [clobber($1,before,(1)),� � �, delete((1))] [clobber($1,before,(1)),� � �, delete((1))](1) ldq $1, 184($sp)(2) addl $1, 0, $2(3) ldil $3, 503(4) sll $3, $2, $4(5) addl $4, 0, $4(6) stq $4, 184($sp) (2) addl $1, 0, $2(3) ldil $3, 503(4) sll $3, $2, $4(5) addl $4, 0, $4(6) stq $4, 184($sp) ldiq $1, -28793ldiq $2, 2556ldiq $3, 137ldiq $4, -22136(2) addl $1, 0, $2(3) ldil $3, 503(4) sll $3, $2, $4(5) addl $4, 0, $4(6) stq $4, 184($sp)
ldiq $1, 234ldiq $2, -45256ldiq $3, 33135ldiq $4, 97(2) addl $1, 0, $2(3) ldil $3, 503(4) sll $3, $2, $4(5) addl $4, 0, $4(6) stq $4, 184($sp)(a) (b) (c) (d)Figure 6: Removing redundant instructions. In this example we are interested in whether instruction (1) is redundant. In(b) we delete the instruction; assemble, link, and execute the sample; and compare the result with that produced from theoriginal sample in (a). If they are the same, (1) is redundant and can be removed permanently. Unfortunately, this simplemutation will succeed if register $1 happens to contain the correct value. To counter this possibility, we must clobber allregisters with random values. To make sure that the clobbers themselves do not initialize a register to a correct value, twovariant mutations ((c) and (d)) are constructed using di�erent clobbering values. Both variants must succeed for the mutationto succeed.4.5 Computing De�nition/UseOnce implicit register arguments have been detected andmade explicit and distinct register uses have been split intoindividual live ranges, we are ready to attempt our �nal pre-processing task. Each register reference in a live range hasto be analyzed and we have to determine which referencesare pure uses, pure de�nitions, and use-de�nitions. In-structions that both use and de�ne a register are commonon CISC machines (e.g. on the VAX paddl2 5,r1q incrementsR1 by 5), but less common on modern RISC machines.The �rst occurrence of a register in a live-range must bea de�nition; the last one must be a use. The intermediateoccurrences can either be pure uses or use-de�nitions. Forexample, in the following x86 multiplication sample, the �rstreference to register %edx (%edx1) is a pure de�nition, thesecond reference (%edx2) a use-de�nition, and the last one(%edx3) a pure use:main () fint a,b,c;a = b * c;g movl -8(%ebp),%edx1imull -12(%ebp),%edx2movl %edx3,-4(%ebp)Figure 9 shows how we use the copy and rename muta-tions5 to create a separate path from the �rst de�nition of a5Necessary register clobbers have been omitted for clarity.

register R1 to a reference of R1 that is either a use or a use-de�nition. If the reference is a use/de�nition the mutationwill fail, since the new value computed will not be passedon to the next instruction that uses R1.4.6 Building the Data-Flow GraphThe last task of the Preprocessor is to combine the gatheredinformation into a data-
ow graph for each sample. Thisgraph will form the basis for all further analysis.The data-
ow graph describes the
ow of informationbetween elements of a sample. Information that was im-plicit or missing in the original sample but recovered by thePreprocessor is made explicit in the graph. The nodes of thegraph are assembly code operators and operands and thereis an edge A ! B if B uses a value stored in or computedby A.For ease of identi�cation, each node is labeled Nai, where Nis the operator or operand, i is the instruction number, anda is N's argument number in the instruction. In Figure 10(b),for example, $1113 refers to the use of register $11 as the �rstargument to the third instruction (mul). @L1.a is a datadescriptor [11] referring to the variable a at static nestinglevel 1.Given the information provided by the various mutationanalyses, building the graph for a sample S is straightfor-

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
How to pick?
Looks like will make <, >, etc give different results.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Why not just run same instruction twice?
Also have to guard against things like "ld r1,0(r1)"

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

rename(%eax,%ebx,(3)),clobber(%ebx,before,(2)]
(8) movl(7) movl(6) addl(5) call(4) pushl(3) movl(1) movl(2) pushl

(c) (d)(a) (b)
[rename(%eax,%ebx,(4)),

-4(%ebp)%eax,%esp%edx,%edxP%ebx$8,(8) movl(7) movl(6) addl(5) call(4) pushl
clobber(%ebx,before,(4)]

-4(%ebp)%eax,%esp$8,P-8(%ebp),%ebx%edx,%edx%ebx %ebx(8) movl(7) movl(6) addl(5) call(4) pushl(3) movl(2) pushl -123, %ebxmovl[rename(%eax,%ebx,(4)),
movl rename(%eax,%ebx,(2)),[rename(%eax,%ebx,(4)),clobber(%ebx,before,(3)]rename(%eax,%ebx,(3)),MutationMutatedSamples %eax-12(%ebp), -12(%ebp),%eax

-4(%ebp)%eax,%esp %eax-8(%ebp), %eax-12(%ebp),
%edx,%edxP%eax%eax$8, %eax-8(%ebp), %eax-12(%ebp),%eax (1) movl(2) pushl (1) movl(3) movl(1) movl(2) pushl -123, %ebx -4(%ebp)%eax,%esp$8,P %ebx-8(%ebp),%edx,%edx(8) movl(7) movl(6) addl(5) call(3) movl(4) pushl %ebx-123, %ebx%eaxmovl

Figure 7: Splitting the sample from Figure 4(b). (a) shows the sample after the references to %eax in (7) and (8) have beenprocessed. Mutation (b) will fail (i.e. produce a value di�erent from the original sample), since the region only contains theuse of %eax, not its de�nition. The region is extended until the mutated sample produces the same result as the original (c),and then again until the results di�er (d). Figure 4(e) shows the sample after regions have been split and registers renamed.Original Sample [rename(%ecx,%eax,(1)),rename(%ecx,%eax,(2))] [move((4),after,(5))](1) movl -8(%ebp),%ecx(2) movl %ecx,%eax(3) cltd(4) idivl -12(%ebp)(5) movl %eax,-4(%ebp) (1) movl -8(%ebp), %ebx(2) movl %ebx ,%eax(3) cltd(4) idivl -12(%ebp)(5) movl %eax,-4(%ebp) (1) movl -8(%ebp),%ecx(2) movl %ecx,%eax(3) cltd(5) movl %eax,-4(%ebp)(4) idivl -12(%ebp)(a) (b) (c)Figure 8: Detecting implicit arguments. (a) is the original x86 sample. The (b) mutation will succeed, indicating that cltd,idivl, and movl are independent of %ecx. The (c) mutation will fail, since %eax is an implicit argument to idivl.ward. A node is created for every operator and operand thatoccurs explicitly in S. Instructions that were determinedto be redundant (Section 4.2) are ignored. Extra nodesare created for all implicit input and output arguments(Section 4.4). Finally, based on the information gatheredthrough live-range splitting (Section 4.3) and de�nition-useanalysis (Section 4.5), output register nodes can be con-nected to the corresponding input nodes.Note that once all samples have been converted intodata-
ow graphs, we can easily determine the signatures ofindividual instructions. This is a �rst and crucial step to-wards a real understanding of the machine. From the graphin Figure 10(d), for example, we can conclude that cltdis a register-to-register instruction, and that the input andoutput registers both have to be %eax.5 The ExtractorThe purpose of the Extractor is to analyse from the data-
ow graphs and extract the function computed by each indi-vidual operator and operand. In this section we will describetwo of the many techniques that can be employed: GraphMatching which is a simple and fast approach that workswell in many cases, and Reverse Interpretation which is amore general (and much slower) method.5.1 Graph MatchingTo extract the information of interest from the data-
owgraphs, we need to make the following observation: for abinary arithmetic sample a = b� c, the graph will have thegeneral structure shown in Figure 11(c). That is, the graph

will have paths Pb and Pc originating in @L1.b and @L1.cand intersecting at some node P . Furthermore, there will bepaths Pp and Pa originating in P and @L1.a that intersectat some node Q. Pp may be empty, while all other pathswill be non-empty.P marks the point in the graph where � is performed.The paths Pb and Pc represent the code that loads the r-values of b and c, respectively. Similarly, Pa represents thecode that loads a's l-value. Q, being the point where thepaths computing b�c and a's l-value meet, marks the pointwhere the value computed from b� c is stored in a.5.2 Reverse InterpretationGraph Matching is fast and simple but it fails to analyzesome graphs. Particularly problematic are samples that per-form multiplication by a constant, since these are often ex-panded to sequences of shifts and adds. The method we willdescribe next, on the other hand, is completely general butsu�ers from a worst-case exponential time complexity.In the following, we will take an interpreter I to be afunction I :: Sem� Prog� Envin �! EnvoutSem is a mapping from instructions to their semantic inter-pretation, Env a mapping from memory locations, registers,etc., to values, and Prog is the sequence of instructions to beexecuted. The result of the interpretation is a new environ-ment, with (possibly) new values in memory and registers.The example in Figure 12(a) adds 5 to the value in memorylocation 10 (M[10]) and stores the result in memory location20.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"draw it"

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Messes up use as
temp: ld r,0(r)?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Combine micro ops to build up effect of one instruction.

<iAnnotate iPad User>
FreeText
(Does not run backwards)

Original Sample [copy((1),after,(1)),rename(R1,R2,h(1'),(2)i)] [copy((1),after,(1)),copy((2),after,(1')),rename(R1,R2,h(1'),(2'),(3)i)](1) OP1 � � �, R1D, � � �(2) OP2 � � �, R1U or U=D?, � � �(3) OP3 � � �, R1U or U=D?, � � �(4) OP4 � � �, R1U, � � � (1) OP1 � � �, R1D, � � �(1') OP1 � � �, R2D, � � �(2) OP2 � � �, R2, � � �(3) OP3 � � �, R1U or U=D?, � � �(4) OP4 � � �, R1U, � � � (1) OP1 � � �, R1D, � � �(1') OP1 � � �, R2D, � � �(2') OP2 � � �, R2U=D, � � �(2) OP2 � � �, R1U=D, � � �(3) OP3 � � �, R2, � � �(4) OP4 � � �, R1U, � � �(a) (b) (c)Figure 9: Computing de�nition/use information. The �rst occurence of R1 in (a) is a de�nition (D), the last one a use (U).The references to R1 in (2) and (3) could be either uses, or use-de�nitions (U/D). The mutation in (b) will succeed i� (2) is apure use. In (c) we assume that (b) failed, and hence (2) is a use-de�nition. (c) will succeed i� (3) is a pure use./* MUL @L1.a @L1.b @L1.c */main()fint b=313,c=109,a=b*c;g(1) lw $9, 120($sp)(2) lw $10, 116($sp)(3) mul $11, $9, $10(4) sw $11, 124($sp)
$911120($sp)21 $1012116($sp)22 $1113$923$1033$1114124($sp)24

lw01lw02mul03sw04@L1.a11
@L1.b21@L1.c31

(a) (b)/*DIV @L1.a @L1.b @L1.c*/main()fint b,c,a=b/c;gmovl -8(%ebp),%ecxmovl %ecx,%eaxcltdidivl -12(%ebp)movl %eax,-4(%ebp) %eax13%eax24
-8(%ebp)11 %ecx21%ecx12 %eax22-12(%ebp)14%eax15-4(%ebp)25

movl01movl02cltd03idivl04movl05@L1.a11

@L1.b21
@L1.c31(c) (d)Figure 10: MIPS multiplication (a-b) and x86 division (c-d) samples and their corresponding data-
ow graphs. Rectangularboxes are operators, round-edged boxes are operands, and ovals represent source code variables. Note that, in (d), the implicitarguments to cltd and idivl are explicit in the graph (they are drawn unshaded). Also note that the edges %eax24 ! idivl04and idivl04 ! %eax24 indicate that idivl reads and modi�es %eax. All the graph drawings shown in this paper were generatedautomatically as part of the documentation produced by the architecture discovery system.A reverse interpreter R, on the other hand, is a functionthat, given a program and an initial and �nal environment,will return a semantic interpretation that turns the initialenvironment into the �nal environment. R has the signatureR :: Semin � Envin � Prog� Envout �! Semout:In other words, R extends Semin with new semantic inter-pretations, such that the program Prog transforms Envin toEnvout. In the example in Figure 12(b) the reverse inter-preter determines that the add instruction performs addi-tion.5.2.1 The AlgorithmWe will devote the remainder of this section to a detailed dis-cussion of reverse interpretation. Particularly, we will showhow a probabilistic search strategy (based on expressing the

likelihood of an instruction having a particular semantics)can be used to implement an e�ective reverse interpreter.The idea is simply to interpret each sample, choosing(non-deterministically) new interpretations of the operatorsand operands until every sample produces the required re-sult. The reverse interpreter will start out with an emptysemantic mapping (Semin = fg), and, on completion, will re-turn a Semout mapping each operator and addressing modeto a semantic interpretation.The reverse interpreter has a small number of seman-tic primitives (arithmetic, comparisons, logical operations,loads, stores, etc.) to choose from. RISC-type instruc-tions will map more or less directly into these primitives,but they can be combined to model arbitrarily complexmachine instructions. For example, addl3� a;a;a(a; b; c) =store (a; add (load (b); load (c))) models the VAX add in-struction, and maddr r;r;r(a; b; c) = add (a; mul (b; c)) the

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

PbPc
Pa

PpP Q
$911120($sp)21 $1012116($sp)22 $1113$923$1033$1114124($sp)24

lw01lw02mul03sw04@L1.a11
@L1.b21@L1.c31 Pb

PcPa
PpP Q

-8(%ebp)11 %ecx21%ecx12 %eax22-12(%ebp)14%eax15-4(%ebp)25

movl01movl02cltd03idivl04movl05@L1.a11

@L1.b21
@L1.c31 %eax13%eax24(a) (b)(c) L1.aL1.bL1.c P QPbPc PaPp (d) PcPbPa -12(fp)11-8(fp)21-4(fp)31 addl301@L1.a11@L1.b21@L1.c31 P QFigure 11: Data-
ow graphs after graph matching. (a) is MIPS multiplication, (b) is x86 division, and (d) is VAX addition.In (a), P = mul03, Q = sw04. Hence, on the MIPS, lw is responsible for loading the r-values of b and c, mul performsmultiplication, and sw stores the result.(a) I0B@ fadd(x; y) = x+ y; load(a) = M[a]; store(a; b) = M[a] bg;[[store(20; add(load(10); 5))]];fM[10] = 7; M[20] = 9g 1CA �! fM[10] = 7;M[20] = 12g(b) R0BBB@ fload(a) = M[a]; store(a; b) = M[a] bg;fM[10] = 7; M[20] = 9g;[[store(20; add(load(10); 5))]];fM[10] = 7; M[20] = 12g 1CCCA �! fadd(x; y) = x+ y;load(a) = M[a];store(a; b) = M[a] bgFigure 12: (a) shows the result of an interpreter I evaluating a program [[store(20; add(load(10); 5))]], given an environmentfM[10] = 7; M[20] = 9g. The result is a new environment in which memory location 20 has been updated. (b) shows the resultof a reverse interpretation. R is given the same program and the same initial and resulting environments as I. R also knowsthe semantics of the load and store instructions. Based on this information, R will determine that in order to turn Envininto Envout, the add instruction should have the semantics add(x; y) = x+ y.MIPS multiply-and-add. Figure 14 lists the most importantprimitives, and in Section 5.2.3 we will discuss the choice ofprimitives in detail.The example in Figure 13 shows the reverse interpreta-tion of the sample in Figure 10(a-b). The data-
ow graphhas been converted into a list of instructions to be inter-preted. In this example, we have already determined thesemantics of the sw and lw instructions and the am1a r;c reg-ister+o�set addressing mode. All that is left to do is to �xthe semantics of the mul instruction such that the result-ing environment contains M[@L1:a] = 34117. The reverseinterpreter does this by enumerating all possible semanticinterpretations of mul, until one is found that produces thecorrect Envout.Before we can arrive at an e�ective algorithm, there area number of issues that need to be resolved.First of all, it should be clear there will be an in�nitenumber of valid semantic interpretations of each instruction.In the example in Figure 13, mulr r;r could get any one ofthe semantics mulr r;r(a; b) = a � b, mulr r;r(a; b) = a �b � 1, mulr r;r(a; b) = b2 � a=b, etc. Since most machineinstructions have very simple semantics, we should strivefor the simplest (shortest) interpretations.Secondly, there may be situations where a set of sam-

ples will allow several con
icting interpretations. To seethis, let S=pmain()fint b=2,c=1,a=b*c;gq be a sample,and let the multiplication instruction generated from S benamed mul. Given that Envin = fb = 2; c = 1g and Envout =fb = 2; c = 1; a = 2g, the reverse interpreter could reason-ably conclude that mul(a; b) = a=b, or even mul(a; b) =a � b + 1. A wiser choice of initialization values (such asb=34117,c=109), would avoid this problem. A Monte Carloalgorithm can help us choose wise initialization values:6 gen-erate pairs of random numbers (a; b) until a pair is found forwhich none of the interpreter primitives (or simple combi-nations of the primitives) yield the same result.Thirdly, the reverse interpreter might produce the wrongresult if its arithmetic is di�erent from that of the target ar-chitecture. We use enquire [16] to gather information aboutword-sizes on the target machine, and simulate arithmeticin the correct precision.A further complication is how to handle addressing modecalculations such as a1 am1a r;c (120; $sp) which areused in calculating variable addresses. These typically relyon stack- or frame pointer registers which are initialized out-side the sample. How is it possible for the interpreter todetermine that in Figure 13 @L1.a, @L1.b, and @L1.c are6Thanks to John Hamer for pointing this out.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

R
0BBBBBBBBBBBBBBBBBB@
fam1a r;c(a; b) = loadAddr (add (a; b)); lwr a(a) = load (a);sw� r;a(a; b) = store (a; b)g;fM[@L1:b] = 313; M[@L1:c] = 109g;26666666664
26666666664 (1) a1 am1a r;c (120; $sp)(2) $9 lwr a (a1)(3) a2 am1a r;c (116; $sp)(4) $10 lwr a (a2)(5) $11 mulr r;r ($9; $10)(6) a3 am1a r;c (124; $sp)(7) sw� r;a ($11; a3)

37777777775
37777777775 ;fM[@L1:b] = 313; M[@L1:c] = 109; M[@L1:a] = 34117g

1CCCCCCCCCCCCCCCCCCA �!
fam1a r;c(a; b) = loadAddr (add (a; b));lwr a(a) = load (a);sw� r;a(a; b) = store (a; b);mulr r;r(a; b) = mul (a; b)g

Figure 13: Reverse interpretation example. The data-
ow graph in Figure 10(a) has been broken up into seven primitiveinstructions, each one of the form result operator (arguments). am1a r;c represents the \register+o�set" addressingmode. The ai's are \pseudo-registers" which hold the result of address calculations. To distinguish between instructions withthe same mnemonic but di�erent semantics (such as paddl $4,%ecxq and paddl -8(%ebp),%edxq on the x86), instructions areindexed by their signatures. lwr a, for example, takes an address as argument and returns a result in a register.addressed as 124 + $sp, 120 + $sp, 116 + $sp, respectively,for some unknown value of $sp? We handle this by initial-izing every register not initialized by the sample itself to aunique value ($sp ?$sp). The interpreter can easily de-termine that a symbolic value 124+?$sp must correspond tothe address @L1.a after having analyzed a couple of samplessuch as pmain()fint a=1452;gq.However, the most di�cult problem of all is how thereverse interpreter can avoid combinatorial explosion. Wewill address this issue next.5.2.2 Guiding the InterpreterReverse interpretation is essentially an exhaustive search fora workable semantics of the instruction set. Or, to put itdi�erently, we want the reverse interpreter to consider allpossible semantic interpretations of every operator and ad-dressing mode encountered in the samples, and then choosean interpretation that allows all samples to evaluate to theirexpected results. As noted before, there will always be anin�nite number of such interpretations, and we want theinterpreter to favor the simpler ones.Any number of heuristic search methods can be usedto implement the reverse interpreter. There is, however,one complication. Many search algorithms require a �t-ness function which evaluates the goodness of the currentsearch position, based on the results of the search so far.This information is used to guide the direction of the con-tinued search. Unfortunately, no such �tness function canexist in our domain. To see this, let us again considerthe example interpretation in Figure 13. The interpretermight guess that mulr r;r(a; b) = mul (a; add (100; b)), and,since 313 � 100 + 109 = 31409 is close to the real solu-tion (34117) the �tness function would give this solutiona high goodness value. Based on this information, the inter-preter may continue along the same track, perhaps tryingmulr r;r(a; b) = mul (a; add (110; b)).This is clearly the wrong strategy. In fact, an unsuc-cessful interpretation (one that fails to produce the correctEnvout) gives us no new information to help guide our furthersearch.Fortunately, we can still do much better than a com-pletely blind search. The current implementation is based

on a probabilistic best-�rst search. The idea is to assign alikelihood (or priority) to each possible semantic interpre-tation of every operator and addressing mode. The inter-preter will consider more likely interpretations (those thathave higher priority) before less likely ones. Note the di�er-ence between likelihoods and �tness functions: the formerare static priorities that can be computed before the searchstarts, the latter are evaluated dynamically as the searchproceeds.Let I be an instruction, S the set of samples in which Ioccurs, and R a possible semantic interpretation of I. Thenthe likelihood that I will have the interpretation R isL(S; I; R) = c1M(S; I;R)+c2P (S;R)+c3G(I;R)+c4N(I;R)where the ci's are implementation speci�c weights and M ,P , G, and N are functions de�ned below.M(S; I; R) This function represents information gatheredfrom successful (or even partially successful) graphmatchings. Let S be the MIPS multiplication sam-ple in Figure 11(a). After graph matching we knowthat the operators and operands along the Pb path willbe involved in loading the value of @L1.b. ThereforeM(S; lwr a; load) will be very high. Similarly, sincethe paths from @L1.b and @L1.c convene in the mul30node, mul is highly likely to perform a multiplication,and therefore M(S; mulr r;r; mul) will also be high.When available, this is the most accurate informationwe can come by. It is therefore weighted highly in theL(S; I; R) function.P (S;R) The semantics of the sample itself is another impor-tant source of information, particularly when combinedwith an understanding of common code generation id-ioms.As an example, let S=pmain()fint b,c,a=b*cgq. Thenwe know that the corresponding assembly code sam-ple is much more likely to contain load , store , mul ,add , or shiftLeft instructions, than (say) a div ora branch . Hence, for this example, P (S; mul) >P (S; add)� P (S; branch).

<iAnnotate iPad User>
FreeText
?

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
"?"

G(I; R) The signature of an instruction can provide someclues as to the function it performs. For example, if Itakes an address argument it is quite likely to performa load or a store , and if it takes a label argumentit probably does a branch . Similarly, an instruction(such as sw� r;a in Figure 11(a) or addl3� a;a;a in Fig-ure 11(d)) that returns no result is likely to perform(some sort of) store operation.N(I; R) Finally, we take into account the name of the in-struction. This is based on the observation that if I'smnemonic contains the string "add" or "plus" it ismore likely to perform (some sort of) addition than(say) a left shift. Unfortunately, this information canbe highly inaccurate, so N(I; R) is given a low weight-ing.For many samples these heuristics are highly successful. Of-ten the reverse interpreter will come up with the correct se-mantic interpretation of an instruction after just one or twotries. In fact, while previous versions of the system reliedexclusively on graph matching, the current implementationnow mostly uses matching to compute the M(S; I; R) func-tion.There are still complex samples for which the reverseinterpreter will not �nd a solution within a reasonable time.In such cases a time-out function interrupts the interpreterand the sample is discarded.5.2.3 Primitive InstructionsThe instruction primitives used by the reverse interpreterlargely determine the range of architectures that can be an-alyzed. A comprehensive set of complex primitives mightmap cleanly into a large number of instruction set archi-tectures, but would slow down the reverse interpreter. Asmaller set of simple primitives would be easier for the re-verse interpreter to deal with, but might fail to provide asemantic interpretation for some instructions. As can beseen from Figure 14, the current implementation employs asmall, RISC-like instruction set, which allows us to handlecurrent RISCs and CISCs. It lacks, among other things, con-ditional expressions. This means that we currently cannotanalyze instructions like the VAX's arithmetic shift (ash),which shifts to the left if the count is positive, and to theright otherwise.In other words, the reverse interpreter will do well whenanalyzing an instruction set that is at the same or slightlyhigher level than its built-in primitives. However, dealingwith micro-code-like or very complex instructions may wellbe beyond its capabilities. The reason is our need to always�nd the shortest semantic interpretation of every instruc-tion. This means that when analyzing a complex instructionwe will have to consider a very large number of short (andwrong) interpretations before we arrive at the longer, correctone. Since the number of possible interpretations grows ex-ponentially with the length of the semantic interpretation,the reverse interpreter may quickly run out of space andtime.Although very complex instructions are currently out offavor, they were once very common. Consider, for exam-ple, the VAX's polynomial evaluation instruction pPOLYqor the HP 2100 [10] series computers' \alter-skip-group."The latter contains 19 basic opcodes that can be combined(up to 8 at a time) into very complex statements. For exam-ple, the statement pCLA,SEZ,CME,SLA,INAq will clear A,

skip if E=0, complement E, skip if LSB(A)=0, and thenincrement A.6 The SynthesizerThe Synthesizer collects all the information gathered by pre-vious phases and converts it into a BEG speci�cation. If thediscovery system is part of a self-retargeting compiler, themachine description would be fed directly into BEG andthe resulting code generator would be integrated into thecompiler. If the discovery system is used to speed up amanual compiler retargeting e�ort the machine descriptioncould �rst be re�ned by the compiler writer.The main di�culty of this phase is that there maynot be a simple mapping from the intermediate code in-structions emitted by the compiler into the machine codeinstructions. As an example, consider a compiler whichemits an intermediate code instruction BranchEQ(a; b; L) =IF a = b GOTO L. Using the primitives in Fig-ure 14, the semantics of BranchEQ can be described asbrTrue (isEQ (compare (a1; a2)); L). This, incidentally, isthe exact semantics we derive for the MIPS' beq instruc-tion. Hence, in this case, generating the appropriate BEGpattern matching rule is straight-forward.However, on most other machines the BranchEQ instruc-tion has to be expressed as a combination of two ma-chine code instructions. For example, on the Alpha wederive cmpeq(a; b) = isEQ (compare (a; b)) and bne(a; L) =brTrue (a; L). To handle this problem, a special Synthesizerphase (the Combiner) attempts to combine machine codeinstructions to match the semantics of intermediate codeinstructions. Again, we resort to exhaustive search. Weconsider any combination of instructions to see if combin-ing their semantics will result in the semantics of one of theinstructions in the compiler's intermediate code.7 Any suchcombination results in a separate BEG pattern matchingrule. See �gure Figure 15(d) for an example.Depending on the complexity of the machine descriptionlanguage, the Synthesizer may have to contend with otherproblems as well. BEG, for example, has a powerful wayof describing the relationship between di�erent addressingmodes, so called chain rules. A chain rule expresses underwhich circumstances two addressing modes have the samesemantics. The chain-rules in Figure 15(b-c) express thatthe SPARC's register+o�set addressing mode is the sameas the register immediate addressing mode when the o�setis 0. To construct the chain-rules we consider the semanticsSA and SB of every pair of addressing modes A and B. Foreach pair, we exhaustively assign small constants (such as 0or 1) to the constant arguments of SA and SB, and we as-sign registers with hardwired values (such as the SPARC's%g0) to SA and SB 's register arguments. If the resulting se-mantics S0A and S0B are equal, we produce the correspondingchain-rule.7 Discussion and SummaryIt is interesting to note that many of the techniques pre-sented here have always been used manually by compiler7This is somewhat akin to Massalin's [14] superoptimizer. Thedi�erence is that the superoptimizer attempts to �nd a smallest pro-gram, whereas the Combiner looks for any combination of instruc-tions with the required behavior. The back-end generator is thenresponsible for selecting the best (cheapest) instruction sequence atcompile-time.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
!

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

Signature Semantics Commentsadd (I� I)! I add (a; b) = a+ b Also sub , mul , div , and mod .abs I! I abs (a) =j a j Also neg , not and move .and (I� I)! I and (a; b) = a ^ b Also or , xor , shiftLeft , and shiftRight .ignore1 (I� I)! I ignore1 (a; b) = b Ignore �rst argument. Also ignore2 .compare (I� I)! C compare (a; b) = ha < b; a = b; a > bi Return the result of comparing a and b. Example:compare (5; 7) = hT;F; Fi.isLE C ! B isLE (a) = a 6= h ; ;Ti Return true if a represents a less-than-or-equalcondition. Also isEQ , isLT , etc.brTrue (B � L) brTrue (a; b) = if a then PC b Branch on true. Also brFalse .nop No operation.load A ! I load (a) = M[a] Load an integer from memory.store (A � I) store (a; b) = M[a] b Store an integer into memory.loadLit Lit! I loadLit (a) = a Load an integer literal.loadAddr Addr! A loadAddr (a) = a Load a memory address.Figure 14: Reverse interpreter primitives. Available types are Int (I), Bool (B), Address (A), Label (L), and ConditionCode (C). M[] is the memory. T is True and F is False. C is an array of booleans representing the outcome of a comparison.While the current implementation only handles integer instructions, future versions will handle all standard C types. Hencethe reverse interpreter will have to be extended with the corresponding primitives.(a) NONTERMINALS AddrMode4 ADRMODECOND ATTRIBUTES (int4 1 : INTEGER) (reg4 1 : Register);(b) RULE Register.a1 -> AddrMode4.res;COST 0; EVALfres.int4 1 := 0;g EMITfres.reg4 1 := a1;g(c) RULE AddrMode4.a1 -> Register.res;CONDITIONf(a1.int4 1 = 0)g; COST 0; EMITfres := a1.reg4 1;g(d) RULE BranchEQ Label.a1 Register.a2 IntConstant.a3 ;CONDITIONf(a3.val>=-4096) AND (a3.val<=4095)g;COST 2;EMITfprint "cmp", a2 "," a3.val; print "be", "L" a1.lab; print "nop"g(e) RULE Mult Register.a3(Reg o0) Register.a4(Reg o1) -> Register.res(Reg o0);COST 15; TARGET a3;EMITfprint "call .mul, 2"; print "nop"gFigure 15: Part of a BEG speci�cation for the SPARC, generated automatically by the architecture discovery system. (a)shows the declaration of the \register+o�set" addressing mode. (b) and (c) are chain-rules that describe how to turna \register+o�set" addressing mode into a register (when the o�set is 0), and vice versa. In (d) a comparison and abranch instruction have been combined to match the semantics of the intermediate code instruction BranchEQ. Note how thearchitecture discovery system has detected that the integer argument to the cmp instruction has a limited range. (e), �nally,describes the SPARC's software multiplication routine ".mul". Note that we have discovered the implicit input (%o0 and %o1)and output argument (%o0) to the call instruction.writers. The fastest way to learn about code-generationtechniques for a new architecture is to compile some small Cor FORTRAN program and examine the resulting assemblycode. The architecture discovery unit automates this task.One of the major sources of problems when writing ma-chine descriptions by hand is that the documentation de-scribing the ISA, the implementation of the ISA, the as-sembler syntax, etc. is notoriously unreliable. Our systembypasses these problems by dealing directly with the hard-ware and system software. Furthermore, our system makesit cheap and easy to keep machine descriptions up to datewith hardware and system software updates.We will conclude this paper with a discussion of the gen-erality, completeness, and implementation status of the ar-chitecture discovery system.
7.1 GeneralityWhat range of architectures can an architecture discoverysystem possibly support? Under what circumstances mightit fail?As we have seen, our analyzer consists of three majormodules: the Lexer, the Preprocessor, and the Extractor.Each of them may fail when attempting to analyze a partic-ular architecture. The Lexer assumes a relatively standardassembly language, and will, of course, fail for unusual lan-guages such as the one used for the Tera. The Extractormay fail to analyze instructions with very complex seman-tics, since the reverse interpreter (being worst-case exponen-tial) may simply \run out of time."The Preprocessor's task is essentially to determine how

<iAnnotate iPad User>
FreeText
Must map these to compiler IR right?

<iAnnotate iPad User>
FreeText
Perhaps better to procompute to some length (5?) since only 32 or so.

pairs of instructions communicate with each other within asample. Should it fail to do so the data-
ow graph cannotbe built, and that sample cannot be further analyzed. Thereare basically four di�erent ways for two instructions A andB to communicate:Explicit registers A assigns a value to a general purposeregister R. B reads this value.Implicit registers A assigns a value to a general purposeregister R which is hardwired into the instruction. Breads this value.Hidden registers A and B communicate by means of aspecial purpose register which is \hidden" within theCPU and not otherwise available to the user. Examplesinclude condition codes and the lo and hi registers onthe MIPS.Memory A and B communicate via the stack or mainmemory. Examples include stack-machines such as theBurroughs B6700.The current implementation handles the �rst two, some spe-cial cases (such as condition codes) of the third, but not thelast. For this reason, we are not currently able to analyzeextreme stack-machines such as the Burroughs B6700.Furthermore, there is no guarantee that either CCCGor SDCG will work for all architecture/compiler/languagecombinations. We have already seen that some C compil-ers will be unsafe as CCCG back-ends for languages withgarbage collection. SDCG-based compilers will also fail ifa new ISA has features unanticipated when the back-endgenerator was designed. Version 1 of BEG, for example, didnot support the passing of actual parameters in registers,and hence was unable to generate code for RISC machines.Version 1.5 recti�ed this.7.1.1 Completeness and Code QualityThe quality of the code generated by an SRCG compiler willdepend on a number of things:The quality of the C compiler. Obviously, if the Ccompiler does not generate a particular instruction,then we will never �nd out about it.The semantic gap between C and the target language.The architecture may have instructions that directlysupport a particular target language feature, such asexceptions or statically nested procedures. Since Clacks these features, the C compiler will never producethe corresponding instructions, and no SRCG compilerwill be able to make use of them. Note that this isno di�erent from a CCCG-based compiler which willhave to synthesize its own static links, exceptions, etc.from C primitives.The completeness of the sample set. There may beinstructions which are part of the C compiler's vocab-ulary, but which it does not generate for any of oursimple samples. Consider, for example, an architec-ture with long and short branch instructions. Sinceour branching samples are currently very small (typi-cally, pmain()fint a,b,c; if (b<c) a=9;gq), it is un-likely that a C compiler would ever produce any longbranches.

The power of the architecture discovery system. Ifa particular sample is too complex for us to analyze,we will fail to discover instructions present only inthat sample.The quality of the back-end generator. A back-endgenerated by BEG will perform no optimization, noteven local common subexpression elimination. Re-gardless of the quality of the machine descriptions weproduce, the code generated by a BEG back-end willnot be comparable to that produced by a productioncompiler.It is important to note that we are not trying to reverseengineer the C compiler's code generator. This is a task thatwould most likely be beyond automation. In fact, if the Ccompiler's back-end and the back-end generator use di�erentcode generation algorithms, the codes they generate maybear no resemblance to each other.7.2 Implementation Status and Future WorkThe current version of the prototype implementation of thearchitecture discover system is general enough to be able todiscover the instruction sets of common RISC and CISC ar-chitectures. It has been tested on the integer8 instructionsets of �ve machines (Sun SPARC, Digital Alpha, MIPS,DEC VAX, and Intel x86), and has been shown to generate(almost) correct machine speci�cations for the BEG back-end generator. The areas in which the system is de�cientrelate to modules that are not yet implemented. For exam-ple, we currently do not test for registers with hardwiredvalues (register %g0 is always 0 on the Sparc), and so theBEG speci�cation fails to indicate that such registers arenot available for allocation.In this paper we have described algorithms which deducethe register sets, addressing modes, and instruction sets ofa new architecture. Obviously, there is much additional in-formation needed to make a complete compiler, informationwhich the algorithms outlined here are not designed to ob-tain. As an example, consider the symbol table informationneeded by symbolic debuggers (".stabs" entries).Furthermore, to generate code for a procedure we needto know which information needs to go in the procedureheader and footer. Typically, the header will contain in-structions or directives that reserve space on the runtimestack for new activation records. To deduce this informationwe can simply observe the di�erences between the assemblycode generated from a sequence of increasingly more com-plex procedure declarations. For example, compiling pintP()fgq, pint P()fint a;gq, pint P()fint a,b;gq, etc., willresult in procedure headers which only di�er in the amountof stack space allocated for activation records.Unfortunately, things can get more complicated. On theVAX, for example, the procedure header must contain aregister mask containing the registers that are used by theprocedure and which need to be saved on procedure entry.Even if the architecture discover system were able to deducethese requirements, BEG has no provision for expressingthem.8At this point we are targeting integer instruction sets exclusively,since they generally exhibit more interesting idiosyncrasies than
oat-ing point instruction sets.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

7.2.1 Hardware AnalysisThere has been much work in the past on automati-cally determining the runtime characteristics of an archi-tecture implementation. This information can be used toguide a compiler's code generation and optimization passes.Baker [1] describes a technique (\scheduling through self-simulation"), in which a compiler determines a good sched-ule for a basic block by executing and timing a few alterna-tive instruction sequences. Rumor [12] has it that SunSoftuses a compiler-construction time variant of this techniqueto tune their schedulers. The idea is to derive a good sched-uling policy by running and timing a suite of benchmarks.Each benchmark is run several times, each time with a dif-ferent set of scheduling options, until a good set of optionshas been found.In a similar vein, McVoy's lmbench [15] program mea-sures the sizes of instruction and data caches. This informa-tion can be used to guide optimizations that increase codesize, such as inline expansion and loop unrolling.Finally, Pemberton's enquire [16] program (which de-termines endian-ness and sizes and alignment of data types)is already in use by compiler writers. Parts of enquire havebeen included into our system.It is our intention to include more of these techniques infuture versions of the architecture discovery system. At thepresent time only crude instruction timings are performed.More detailed information would not be useful at this point,since BEG would be unable to make use of it.7.2.2 Current StatusThe system is under active development. The implemen-tation currently consists of 10000 non-blank, non-commentlines of Prolog, 900 lines of shell scripts (mostly for com-municating with the machine being analyzed), 1500 lines ofAWK (for generating the C code samples and parsing theresulting assembly code), and 800 lines of make�les (to in-tegrate the di�erent phases).AcknowledgmentsThanks to Peter Fenwick and Bob Doran for valuable infor-mation about legacy architectures, and to the anonymousreferees for helping me to greatly improve the presentation.References[1] Henry G. Baker. Precise instruction scheduling withouta precise machine model. Computer Architecture News,19(6), December 1991.[2] Digital Systems Research Center. Src modula-3: Re-lease history. http://www.research.digital.com/SRC/modula-3/html/history.html, 1996.[3] David Chase and Oliver Ridoux. C as an interme-diate representation. comp.compilers article numbers90-08-046 and 90-08-063, August 1990. Retrieve fromhttp://iecc.com/compilers/article.html.[4] Cristina Cifuentes and K. John Gough. Decompilationof binary programs. Software { Practice & Experience,25(7):811{829, July 1995.

[5] Tera Computer Company. Major system characteristicsof the Tera supercomputer, November 1995.http://www.tera.com/hardware-overview.html.[6] Helmut Emmelmann, Friedrich-Wilhelm Schr�oer, andRudolf Landwehr. Beg - a generator for e�cient backends. In SIGPLAN 89 Conference on ProgrammingLanguage Design and Implementation, pages 227{237,1989.[7] Interactive Software Engineering. ISE Ei�el in anutshell. http://eiffel.com/eiffel/nutshell.html,1996.[8] D. R. Engler and Todd A. Proebsting. DCG: An e�-cient retargetable dynamic code generation system. InInternational Conference on Architectural Support forProgramming Languages and Operating Systems, Octo-ber 1994.[9] Christopher W. Fraser, Robert R. Henry, and Todd A.Proebsting. BURG { fast optimal instruction selectionand tree parsing. SIGPLAN Notices, 24(7):68{76, April1992.[10] Hewlett-Packard. A Pocket Guide to Hewlett-PackardComputers, 1968.[11] Richard C. Holt. Data descriptors: A compile-timemodel of data and addressing. ACM Transactions onProgramming Languages and Systems, 9(3):367{389,1987.[12] David Keppel. Compiler back-ends. comp.compilersarticle number 95-10-136, October 1995. Retrieve fromhttp://iecc.com/compilers/article.html.[13] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In PLDI'95, pages291{300, La Jolla, CA, June 1995.[14] Harry Massalin. Superoptimizer { a look at the smallestprogram. In Proceedings Second International Confer-ence on Architechtural Support for Programming Lan-guages and Operating Systems (ASPLOS II), Palo Alto,California, October 1987.[15] Larry McVoy and Carl Staelin. lmbench: Portable toolsfor performance analysis, 1996. In USENIX AnnualTechnical Conference, San Diego, California, January1996.[16] Steven Pemberton. Enquire 4.3, 1990.[17] Richard M. Stallman. Using and Porting GNU CC.Free Software Foundation, Inc., 2.7.2 edition, Novem-ber 1995.http://www.gnu.ai.mit.edu/doc/doc.html.

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
Pencil

<iAnnotate iPad User>
FreeText
Killed by vcode

