Analysis is necessary —
but far from sufficient

Jon Pincus
Reliability Group (PPRC)
Microsoft Research

Why are so few successful real-world
development and testing tools
influenced by academic research?

My definition of “real world”:
e Commercial or quasi-commercial
¢ Software and net services
(Excluding IT or Mil-Aero — | have no background there)

Jon Pincus (Microsoft Research) 2

Outline

What makes a tool successful?
Characteristics of successful tools
Analysis — in context

Implications for analysis
Summary

Jon Pincus (Microsoft Research) 3

Success!

¢ Cute diagram

Jon Pincus (Microsoft Research) 4

Success: a real-world view

¢ Atool is successful if people use it
— Not if people buy it but don’t use it (“Shelfware”)
— Not if people try it but don’t use it

Jon Pincus (Microsoft Research) 5

Some examples of success

(drawn from defect detection space, because
that’s my background)

e Purify
* BoundsChecker
¢ PREfix (2.X and later)
— Especially interesting because 1.0 was unsuccessful

Jon Pincus (Microsoft Research) 6

Why do people use a tool? If

it helps them get their work done ...
... more efficiently than they would otherwise
... without making them look bad.

Think in terms of
— Goals
— Value proposition

Jon Pincus (Microsoft Research) 7

Goals

e Organizational goals

— “compensate for not being able to find enough good
developers/QA engineers”

— “get higher-quality software to market”
— “get high-quality software to market more quickly”
— “avoid the memory leaks that plagued our last release”
— “stop breaking the build”

* Personal goals
— “stop having to waste my time on others’ mistakes”
— “find that killer bug”
— “stop getting blamed for breaking the build”

Jon Pincus (Microsoft Research)

Three definite non-goals

¢ Looking stupid

* Not being able to use techniques | already
know

¢ Creating additional work

For more on goals: Alan Cooper’s About Face
http://www.cooper.com/books/01_goal_directed_design.html

Jon Pincus (Microsoft Research) 9

An example

People want to fix the key defects as easily as
possible

PREfix 1.0: “detects defects”

— Too far from goal to be generally useful

— Not successful [although it found a lot of real defects]
PREfix 2.X and later: focus on prioritizing and
understanding defects

— Successful (although fixing them would be even better)

— Techniques: focus on user interaction, data storage,
repository, understandability, prioritization, ...

Jon Pincus (Microsoft Research)

10

Look at the value proposition

¢ (Value — Cost) must be
— Positive
— More positive than any alternatives
« Initially, cost will exceed value; how long
until payback?
* Value: the benefit of the tool
— E.g., higher quality
¢ Cost: more complex

Jon Pincus (Microsoft Research) 11

Cost

¢ Time investment
— Initial use
— Steady-state use
— Training
* Existing employees
* New employees
¢ Process changes

¢ Licensing cost
— Zero for “free” software
— Typically much smaller than the others

Jon Pincus (Microsoft Research)

An example

e Purify 1.0:
— Virtually zero initial cost on most code bases
— Immediate value

— Companies invested (substantially!) to leverage

¢ E.g., changing memory allocators to better match
Purify’s

Jon Pincus (Microsoft Research) 13

An example

* PREfix 1.0:

— Major initial cost

— Usability issues increase ongoing costs

— There’s value; but nobody got to sustained value
¢ PREfix 2.X:

— Lowered initial cost

— Improved usability decreased steady-state and training
cost

— Value —to people who care a lot about reliability
¢ Ongoing work: decrease costs further

Jon Pincus (Microsoft Research) 14

Outline

What makes a tool successful?
Characteristics of successful tools
Analysis — in context

Implications for analysis
Summary

Jon Pincus (Microsoft Research) 15

Characteristics of successful tools

* Successful tools
— address significant problems,
— on real code bases,
— give something for (almost) nothing,
— and are easy to use.

Jon Pincus (Microsoft Research) 16

Significant problems

* Nobody fixes all the bugs. What are the key
ones?

— Often based on most recent scars
— Often based on development or business goals

Jon Pincus (Microsoft Research) 17

Examples: significant problems

e Purify: memory leaks
¢ BoundsChecker: bounds violations

PREfix: defects not found by existing tests
Lint (back in K&R days): portability issues

Jon Pincus (Microsoft Research) 18

Example: insufficiently significant
problems

¢ Vanilla lint (today): ???
(Note: PC-Lint/FlexeLint extend Lint to attack
today’s problems)

¢ Pointer analyses for its own sake

(although it may be useful for solving another
problem)

¢ C/C++ metrics tools

Jon Pincus (Microsoft Research) 19

Real code bases

¢ Usually large (1M+LOC) or very large (10M+ LOC).
— In some areas, “reality” is smaller — e.g., 100s of lines of
DHTML/JSscript
¢ In nasty languages (e.g., C/C++),
— using nasty features (e.g., casts between pointers and ints,
unions, bit fields, gotos, ...)
— with nasty extensions (GCC, MS)
— and non-ANSI-compliant code (GCC, Sun, MS)

Jon Pincus (Microsoft Research) 20

Examples: insufficiently real code
bases

* “For a subset of C, excluding pointers, structs,
and unions ...”

¢ “Assuming the whole program text is available
(i.e., there are no calls to system libraries) ...”

* “We have tested on our approach on
programs up to several thousand lines of
Scheme ...”

Jon Pincus (Microsoft Research) 2

A “fully general solution” includes
(Please assume appropriate trademark/copyright symbols)
* Perl

e C[K&R, ANSI], C++ [Cfront, GCC extensions, MSVC
extensions], Java, C#

e VB, TCL

e ECMAScript [JScript, JavaScript], VBScript, Python
¢ HTML [HTML3.2, Netscape/MS variants], DHTML
e SQL

e XML, XSL, XSL-T, XML Schemas

* FORTRAN, COBOL for legacy code

¢ Make, sh, InstallShield, IDL, Excel macros, ...

Jon Pincus (Microsoft Research) 2

Something for (almost) nothing

* Engineering time is the single most critical
resources at most (successful) companies

¢ Engineers need to be convinced before
investing non-trivial amounts of time

¢ So don’t even think about requiring significant
up-front investment
— code modifications
— process changes

Jon Pincus (Microsoft Research) 2

Examples: something for (almost)
nothing

e Purify for UNIX: just relink
* BoundsChecker: you don’t even need to relink!
¢ PREfix 3.5: just type “prefix”
— (Uh, most of the time, anyhow)
* A non-technology solution: “we’ll do it for you”

— Commercial variant: an initial benchmark for $X, money
back if it doesn’t work

— In many cases, money may be cheaper than engineering
time ...

Jon Pincus (Microsoft Research) 2

Examples: too far from nothing

¢ “Once the programmer modifies the code to
include calls to the appropriate functions ...”

¢ “The programmer simply inserts the
annotations to be checked as conventional
comments ...”

¢ PREfix 1.0: “the following changes to your
build process may prove necessary ...”

Jon Pincus (Microsoft Research) 25

Ease of use

¢ Admittedly, the bar is low here ...

[not sure exactly what to say; it seems so self-
evident ...]

Jon Pincus (Microsoft Research)

2

Examples: ease of use

¢ [use an example from the CAD space. Place
and route is highly algorithmic; but these
days, it’s ease of use which gets the best
results — because engineers can make one
more iteration in the time allotted for a
benchmark]

Jon Pincus (Microsoft Research) 27

Outline

* What makes a tool successful?

* Characteristics of successful tools
¢ Analysis —in context

¢ Implications for analysis

e Summary

Jon Pincus (Microsoft Research)

28

Counterintuitively ...

Actual analysis is only a small part of any
program analysis tool.

In PREfix, < 10% of the “code mass”

Jon Pincus (Microsoft Research) 29

PREfix architecture

¢ Pretty picture here

Jon Pincus (Microsoft Research)

30

PREfix’ key operations

* Parsing

¢ Calculating function dependencies

* Walking paths through functions

¢ Tracking memory during simulation

* Generating and storing models

¢ Generating and storing defect information
* Viewing/sorting/filtering sets of defects

¢ Viewing paths through source code

* Build integration

Jon Pincus (Microsoft Research) 31

3 key non-analysis issues

¢ User interaction
— Information presentation
— Navigation
— Control
¢ Integration
— Build process
— Defect tracking system
— SCM system
¢ Parsing

Jon Pincus (Microsoft Research)

32

User interaction

¢ Engineers must be able to use the results of the

analysis

— Understanding individual defects

— Prioritizing, sorting, and filteng sets of defects

— Interacting with other engineers

— Controlling the analysis (because analyses aren’t perfect)
¢ Today, the bar is ridiculously low

— A good place to make progress!

Jon Pincus (Microsoft Research) 33

Example

¢ [single-line Dereferencing NULL Pointer
message]

Jon Pincus (Microsoft Research)

3

A better example

¢ [Complex code path failing to check new]

Jon Pincus (Microsoft Research) 35

A still better example

¢ Message describing the problem

Jon Pincus (Microsoft Research)

36

Noise

¢ [definition of noise]

¢ [deal with it at analysis level, or at rest of
system level?]

Jon Pincus (Microsoft Research)

Some interesting questions ...

¢ How to summarize information usefully?

¢ How to visualize (sets of) (partial) paths
through code?

Can analysis refine presentation?

Jon Pincus (Microsoft Research)

38

Integration

¢ Atoolis useless if people can’t use it

— Implied: “use it in their existing environment”
* “Environment” includes

— Configuration management (SCM)

— A build process (makefiles, scripts, ...)
— Policies

— A defect tracking system

¢ People have invested a lot in their environment
— They probably won’t change it just for one tool

Jon Pincus (Microsoft Research)

Approaches to integration

¢ Special-case methods seem the norm

— E.g., “intercepting” build commands; special
purpose scripts

— PREfix’ latest attempt:

« treat build information as first-class data — tracked in
database, used in analyses, ...

* move to more general “repository”
¢ Can this be generalized?

e Is there a better way?

Jon Pincus (Microsoft Research)

40

Parsing

* You can’t parse better than anybody else ...
... but you can parse worse
¢ Complexities:
— Incompatibilities
— Extensions
— Full language complexity
— Language evolution

Jon Pincus (Microsoft Research) a

Approaches to Parsing

e Don't
— Alternatives: EDG, GCC, Jikes, ...

Jon Pincus (Microsoft Research) 42

Outline

¢ What makes a tool successful?

* Characteristics of successful tools
¢ Analysis — in context

¢ Implications for analysis

e Summary

Jon Pincus (Microsoft Research) 43

Characteristics of useful analyses

Scalable to large system

— Typically implies incomplete, unsound, incremental, and/or
very simple

Produce information usable by typical engineer
— If there’s a violation, where? How?

— Post-processing output can be useful

— Remember: half the engineers are below average
“Accurate enough” for the particular task
Handle full language complexity

— Or can compensate for unhandled constructs

Jon Pincus (Microsoft Research) a4

Different tradeoffs from compilers

Focus on information, not just results

— Compilers don’t have to explain what they did and
why

Incompleteness and unsoundness may be
okay

Intra-procedural analysis often not enough

Jon Pincus (Microsoft Research) 45

A spectrum of analyses

[make this a chart?]

¢ Flow- and context-insensitive:
— Typically scales well.

— Not particularly accurate (but clearly accurate enough for
some tasks)

— Often hard to understand or prioritize the output [no path
information; no callstack]

* Flow- and context-sensitive
— Scaling problems.
— More accurate; still issues with path-sensitivity
— Info may be more understandable
¢ Path-sensitive
— Non-PREfix Examples?

Jon Pincus (Microsoft Research) 4

Examples of analysis tradeoffs

* Purify/BoundsChecker: very simple

¢ PREfix: incomplete, somewhat unsound,
incremental

e Lint (without post-processing): not “accurate
enough”, often not usable by typical engineer

¢ PREfast: consciously tradeoff completeness for
performance

Jon Pincus (Microsoft Research) a7

Some interesting questions ...

e Which analyses are right for which problems?
— No such thing as the right pointer analysis — it
depends what you want to do with the results

* Are there opportunities to combine analyses?

— Can we use a cheap flow-insensitive algorithm to
focus a more expensive algorithm on juicy places?

— Can we use expensive local path-sensitive
algorithms to improve global flow-insensitive
algorithms?

Jon Pincus (Microsoft Research) 48

Outline

What makes a tool successful?
Characteristics of successful tools
Analysis — in context

Implications for analysis
Summary

Jon Pincus (Microsoft Research) 49

Summary

People use tools to accomplish their tasks
Successful tools must

— address real problems,

— on real code bases,

— give something for (almost) nothing,

— and be easy to use

Analysis is only one piece of a tool
Information is useless if it’s not presented well

Jon Pincus (Microsoft Research)

50

Why are there so few successful real-world
programming and testing tools based on
academic research?

These are not where research has focused.

Can — and should —that change?

Jon Pincus (Microsoft Research) 51

Questions?

Jon Pincus (Microsoft Research)

52

Analysis is necessary —
but far from sufficient

Jon Pincus
Reliability Group (PPRC)
Microsoft Research

